Moving forward

 Resilience is the ability to keep moving forward, even when the path is difficult.

- Hari Srinivasan

Qualifying Exams

Qual Exams


Testing under a spotlight
Qual committee faculty eyes
A ocean of neuroscience to dissect
Luck of the draw, may their queries be kind
May I excel in the knowledge they seek

Seeking E-I balance in my autism boat
GABA calm, steadying its float
Excitatory neurotransmitters of knowledge shine bright.
Balance, focus, 3 hours in sight.

Sensory systems, keep external distractions beat.
Stimming and anxiety, please take a backseat.
Motor systems must be well-oiled, ready to move.
All systems aligned, in perfect groove.


Internal systems, heed my call.
Cooperate and align, one and all.
On this day, let knowledge and calm prevail.
A positive outcome, I must entail.

Externally, pray
lots of positive energy flows my way.


Diagnostic Overshadowing

In PlainSpeak for the Lay Reader

Diagnostic overshadowing happens when doctors or healthcare workers focus so much on a person's autism that they miss other health problems the person might have. This can mean that other illnesses or conditions are not noticed or treated properly.

Key Points:

  1. Mixing Up Symptoms: Sometimes, signs of other health problems are mistaken as just part of autism. For example, if an autistic person feels very anxious or has stomach pain, it might be seen as just them acting up due to autism instead of a separate issue.

  2. Communication Barriers: Many autistic people find it hard to explain their feelings or symptoms and may have other communication challenges. This can make it harder for doctors to understand what's really going on.

  3. Assumptions: Doctors might assume all problems are because of autism and not look for other causes. This can lead to missed diagnoses. Usually any acting up behaviors is redirected back to behavior therapy, when they actually needed different solutions.

  4. Lack of Training: Not all doctors know how to spot other health problems in autistic people. They might need more training to do this well.

  5. Poor Treatment: If other health issues are not found, the person might not get the right treatment. This can affect their immediate and long term health and well-being.

Examples:

  • Mental Health: If an autistic person is feeling very sad or has depression, it might be ignored because it's thought to be just part of their autism.

  • Physical Health: If an autistic person has pain in their stomach, it might be seen as just a behavior issue rather than a real medical problem.

How to Fix This:

  1. Thorough Check-Ups: Doctors should look at the whole person and not just their autism. They should check for other health issues and underlying issues too.

  2. Better Training: Doctors should learn more about how to spot other health problems in autistic people.

  3. Clear Communication: Finding better ways for autistic people to share how they feel can help doctors understand their symptoms better.

  4. Awareness: Helping everyone, including caregivers and educators, and professionals understand that autistic people can have other health problems too.



ADA is 34 years old

Celebrating the 34th Anniversary of the Americans with Disabilities Act

On July 26, 1990, President George H.W. Bush signed the Americans with Disabilities Act (ADA) into law, marking a historic milestone for disability rights. The ADA has been instrumental in prohibiting discrimination against the disabled in all areas of public life, including jobs, schools, transportation, and public and private places open to the general public.

The journey to the ADA's signing was fueled by the relentless efforts of dedicated disability rights activists. One pivotal moment in this movement was the televised and widely viewed Capitol Crawl on March 12, 1990. Hundreds of disability rights activists gathered in Washington, D.C., to urge Congress to pass the ADA. As part of the protest, dozens of individuals with disabilities left their wheelchairs and crawled up the 83 stone steps of the U.S. Capitol building, dramatically demonstrating the barriers they faced in everyday life. Among them was an 8-year-old girl named Jennifer Keelan, whose participation powerfully symbolized the need for change. Her determination and courage, along with that of others, highlighted the urgent need for comprehensive legislation to protect the rights of people with disabilities.

Key figures in the disability rights movement played crucial roles in advocating for the ADA. The late Judith Heumann (we miss you Judy), a lifelong advocate for the rights of people with disabilities, was instrumental in the fight for the ADA. Her leadership and tireless advocacy helped bring disability rights to the forefront of national consciousness. Ed Roberts, known as the father of the independent living movement, also significantly influenced the disability rights movement, emphasizing the importance of self-determination and community-based support. There were countless others whose contributions were vital in making the ADA a reality, reflecting a broad and united effort toward equality and inclusion.

The ADA consists of five titles, each addressing different aspects of public life:

  1. Title I – Employment: Prohibits discrimination against individuals with disabilities in employment and requires employers to provide reasonable accommodations.
  2. Title II – Public Services: Ensures that people with disabilities have equal access to public services, programs, and activities, including public transportation.
  3. Title III – Public Accommodations: Prohibits discrimination in public accommodations such as restaurants, hotels, and stores, and requires accessible facilities.
  4. Title IV – Telecommunications: Mandates accessible telecommunications services, including relay services for individuals with hearing and speech impairments.
  5. Title V – Miscellaneous Provisions: Contains various provisions, including protections against retaliation and coercion, and guidelines for the implementation of the ADA.

It's humbling that laws like the ADA enable disabled individuals like me to avail of opportunities such as getting into college or even embarking on a PhD journey. Such a thing would have been unimaginable earlier. The ADA's passage represents the collective effort and resilience of countless individuals who fought for equality and accessibility. As we commemorate the 34th anniversary of the ADA, we honor the legacy of those activists and reaffirm our commitment to advancing the rights and inclusion of people with disabilities. 



Related Posts: [Disability Legislation], [Disability Rights], [Disability History] [Autism Cares], [ADA], [Capitol Crawl] [Olmstead Act], [Section 504], 



Breaking Free from Popular Opinion

Opinions can guide us gently like a tranquil sea or be as destructive as a tsunami. Our ability to discriminate between beneficial and harmful opinions is crucial. By staying open to new possibilities instead of blindly following popular opinions, we pave the way for a more productive and satisfying life. 

In today's world, we are inundated with opinions from all sides. However, it is crucial that we do not allow these opinions to unduly influence our thinking. Often, opinions reflect the views of influential individuals or groups, but influence does not equate to correctness. It takes courage and conviction to think independently and not simply follow the crowd.

In the autism space, well-meaning professionals continue to adhere to misconceptions.  For example, just over two decades ago, it was believed that children diagnosed with autism would inevitably end up institutionalized. Parents were advised to send their children away before they grew attached, under the misguided belief that autistic children could not reciprocate affection, show emotions, think rationally, or learn meaningfully. Even now, the autism space is flooded with misconceptions. And the more impacted an autistic is, the more entrenched is the misconception about their capability and inclusion. 

But the fact of the matter is that NO ONE is an expert on autism, even those who may have extensive credentials or degrees. Else we would have seen many autism solutions by now, instead of just more 'experts' with degrees.

This does not mean that all opinions are harmful. Like the sea, they can be tranquil and beneficial or destructive like a tsunami. The human mind has the capacity to discern between constructive and destructive opinions. By being open to new possibilities rather than blindly following prevailing opinions, we can navigate our way to a more productive and fulfilling life



History is full of examples where prevailing opinions were challenged. Gandhi’s unique non-violent approach not only led to India's independence but also inspired leaders like Martin Luther King Jr. and Nelson Mandela. Galileo's heliocentric views were condemned yet, Stephen Hawking says of him, “Galileo, perhaps more than any other single person, was responsible for the birth of modern science.” Consider Hippasus, who discovered irrational numbers and faced death for challenging the belief that all numbers could be expressed as ratios of integers. His discovery was so shocking to the Pythagoreans of his time, that they allegedly drowned him. This tragic story illustrates the resistance that change can face when they challenge deeply held beliefs.

The people we admire and respect—those who have changed the world—often chose to defy conventional wisdom. The Wright Brothers did not accept the belief that man could not fly, and Thomas Edison persisted with his inventions despite skepticism. A mind free from the constraints of prevailing opinions is more open to possibilities, leading to creativity and discovery.







Weak Central Coherence Theory of Autism

Caveat: There is no single theory that can fully explain autism. 

The Weak Central Coherence Theory posits that autistics exhibit a cognitive processing style characterized by a propensity for local over global information processing. This theory suggests that autistics have a heightened focus on fine details at the expense of integrating these details into a coherent whole. 

The Weak Central Coherence Theory provides a framework for understanding the distinct cognitive processing style in autism, characterized by a bias toward local over global processing. Neurobiological evidence supports this theory, showing enhanced local processing capabilities and impaired global integration due to altered neural connectivity. This theory helps explain the strengths and challenges faced by individuals with autism in various cognitive and social domains.

Key Concepts

  1. Detail-Focused Processing:

    • Cognitive Tendency: Autistics demonstrate superior performance on tasks requiring attention to fine details, suggesting an enhanced local processing bias.
    • Neurobiological Basis: Neuroimaging studies indicate increased activation in primary and secondary sensory cortices, particularly the visual cortex, which may underlie this enhanced local processing.
  2. Reduced Global Integration:

    • Cognitive Deficit: There is a relative impairment in synthesizing details into a unified, overarching context, which affects higher-order cognitive tasks.
    • Neurobiological Basis: This deficit is associated with reduced long-range connectivity and synchronization between frontal and posterior brain regions, impairing the integration of information across neural networks.
  3. Neuroanatomical Correlates:

    • Prefrontal Cortex: Involvement in executive functions and global processing is diminished, contributing to difficulties in integrating complex information.
    • Posterior Regions: Including the occipital and parietal lobes, these regions exhibit enhanced local processing but reduced integration with other cortical areas.

Examples and Implications

  1. Perceptual Tasks:

    • Enhanced Performance: Autistic individuals often excel at visual search tasks, identifying small differences in stimuli more quickly and accurately than neurotypical individuals.
    • Impaired Performance: They may struggle with tasks that require understanding the overall context, such as interpreting ambiguous figures or scenes.
  2. Cognitive Tasks:

    • Strengths: Detail-oriented tasks like pattern recognition or mechanical assembly are areas of strength.
    • Weaknesses: Tasks requiring abstract thinking, such as comprehending proverbs or making inferences, present challenges due to impaired global processing.
  3. Social Interaction:

    • Implications: Social difficulties can arise from an inability to integrate social cues into a cohesive understanding of social interactions. This can lead to literal interpretations of language and difficulties with nonverbal communication.

Neuroimaging Evidence

  1. Functional MRI (fMRI):
    • Findings: fMRI studies show atypical activation patterns in the frontal and parietal regions during tasks requiring global processing.
  2. Diffusion Tensor Imaging (DTI):
    • Findings: DTI studies indicate atypical white matter integrity, suggesting disrupted long-range connectivity essential for global information integration.
  3. EEG/MEG:
    • Findings: EEG and MEG studies reveal reduced coherence and synchronization across distant brain regions, supporting the notion of impaired global processing.
Two Versions of this post


Who Autism Research Leaves Out

"It’s time for researchers and technologists to rethink their methodologies and technologies, and explore other innovative approaches to give all members of the autistic community the care we need."
-Hari Srinivasan, Time

 

 https://www.psychologytoday.com/us/blog/giving-voice/202402/the-spectrum-of-loss-grief-through-the-autistic-lens



Congratulations, Hari, from the entire Frist Center Family. We are excited to see the results of your research!


FCAI Neurodiversity Inspired Science and Engineering Fellow Hari Srinivasan has been awarded the 2024 Autistic and Neurodivergent Scholars Working for Equity in Research (ANSWER) Scholars Program Award for his project “Navigating the Near: Virtual Reality Investigations of Peripersonal Space in Autism.” Srinivasan will receive a $10,000 award next academic year to work toward this research.

Hari’s continued outstanding achievements never fail to impress us! Congratulations, Hari, from the entire Frist Center Family. We are excited to see the results of your research!




Backyard Visitors

A deer family (mom and 2 baby deer) frequenting our backyard this summer. The young deer  frolicking, chasing each other and running around is a delight to watch. 


Here is a children's short story I wrote sometime ago.


Poster at CAN 2024

 Yeah, I have another Poster Acceptance for the College Autism Network Summit 2024 in Oct. 

================

From: College Autism Network
Sent: Tuesday, July 16, 2024 2:41 PM
To: Srinivasan, Hari
Subject: College Autism Summit Submission Accepted - Poster

Dear Poster Participant:

We are pleased to inform you that your College Autism Summit submission titled 'Navigating the Near: Virtual Reality Investigations of Peripersonal Space in Autism' has been accepted.

………..

Best,
Amy Radochonski and Cherie Fishbaugh, Program Co-Chairs




Exploring Short-Term Synaptic Plasticity and Its Implications in Autism

Short-term synaptic plasticity, a temporary change in synaptic strength lasting from seconds to minutes, is a crucial mechanism for neural communication and information processing. Two key types of short-term plasticity are paired pulse facilitation (PPF) and paired pulse depression (PPD). Understanding these mechanisms can provide insight into the molecular & genetic underpinnings of autism.

Paired Pulse Facilitation (PPF) occurs when two signals (pulses) arrive in quick succession at a synapse, with the second pulse producing a stronger response than the first. This is due to residual calcium (Ca2+) remaining in the presynaptic terminal after the first pulse, which enhances neurotransmitter release upon the arrival of the second pulse. This phenomenon is particularly significant at synapses with low initial release probability, ensuring that enough neurotransmitters are available for subsequent release.

Paired Pulse Depression (PPD), on the other hand, is characterized by a diminished response to the second pulse. This occurs at synapses with high initial release probability, where the first pulse depletes the readily releasable pool of neurotransmitters, leaving insufficient resources for the second pulse. The timing between the pulses is critical; if the interval is too long, Ca2+ dissipates, and vesicles are replenished, mitigating these effects.

In the context of autism, alterations in short-term plasticity have been linked to the disorder's characteristic neural and behavioral features. Research has shown that mutations in synaptic genes such as SYN1 and SYN2, which regulate synaptic vesicle dynamics, can disrupt short-term plasticity. These mutations result in increased PPF at excitatory synapses and enhanced synaptic depression at inhibitory synapses, leading to an excitatory/inhibitory (E/I) imbalance that contributes to network hyperexcitability and altered neuronal communication (Frontiers, 2015)​ (Frontiers)​.

Furthermore, neuroligin-3 mutations, associated with autism, have been found to differentially alter synaptic function in the hippocampus and cortex. These mutations can increase inhibitory synaptic transmission and disrupt endocannabinoid signaling, further impacting short-term plasticity and neural circuitry (Molecular Psychiatry, 2015)​ (Nature)​. These findings underscore the significant role of short-term plasticity in maintaining neural circuit function and how its disruption can contribute to pathogenesis.

2 versions of this post

For the Academic/Scientific Audience

PlainSpeak in plain language for the lay reader



Independence leading to loneliness and fragmented relationships

  https://time.com/6551520/loneliness-autism-essay/



Transcription Bloopers

Actual Audio: You want to go into superior colliculus a bit more?

Transcription Software: You want to go into the spiritual leaders a bit more.

Audio: So the input is converging. 

Software: So the imprint is converging

 

Disability and Poverty is a tough cycle

In PlainSpeak for Lay Audience

Disability and Poverty: A Tough Cycle

Disability and poverty are closely connected. This makes life harder for disabled people. Here’s why.

  1. Education: Many disabled people don’t get a good education. This makes it hard for them to learn skills needed for good jobs.

  2. Jobs: Disabled people often face problems finding jobs. There aren’t enough job opportunities, and some employers discriminate against them. Without good jobs, it’s hard to earn enough money.

  3. Healthcare: Poor people often can’t afford good healthcare. This can lead to untreated health problems that cause or worsen disabilities.

  4. Support Services: Disabled people need special support, like assistive devices or home modifications, but these can be expensive. Without money, they can’t get the help they need.

The National Council on Disability says that these problems make more disabled people live in poverty. The World Health Organization also says that we need to solve both poverty and disability issues together.

To break this cycle, we need to:

  • Provide better education for disabled people.
  • Create more job opportunities and stop workplace discrimination.
  • Offer better social support services.
  • Make healthcare and housing affordable and accessible for everyone.

When we invest in these areas, we help disabled people live better lives. This also helps reduce poverty and builds a stronger, fairer society for everyone.

2 versions of this post

In PlainSpeak Plain Language for Lay Reader

For Scientific/Academic Audience

UCLA-AIRP Answer Scholars Award

 

Congratulations! On behalf of the Autistic and Neurodivergent Scholars Working for Equity in Research (ANSWER) of the AIR-P, we are pleased to inform you that your project... has been selected for the 2024 ANSWER Scholars Program for the project period September 1st, 2024 – August 31, 2025. Your application, achievements, and qualifications truly impressed our review committee. 








The False Moral Authority of Titles

The False Moral Authority of Titles

In today's world, holding an advanced degree or prestigious title leads those individuals to think that they are entitled to the role of moral and legal gatekeeper. Such a perspective is not only outdated but dangerously arrogant

(This echoes the colonial mindset where the "educated colonizers" claimed ipso facto moral and legal authority over those they deemed "uneducated primitives"). 

One quick path to fame and relevance today is the spread of negative news, fueled by algorithms that amplify these messages. As as  Sri Sri Ravi Shankar noted, humans already have a tendency to doubt the positive but not the negative. For instance, when someone says "I love you," it's often met with skepticism ("Really?"), while "I hate you" is silently accepted. 

Negative news triggers larger outward reactions, whereas positive news generates internal feel-good responses that don't spread as widely. As a result, negative spins and conspiracy theories have become a quick road to staying relevant and  profits in the form of online followers, book deals, speaking engagements.... which in turn helps justify the perception of them as an "expert" and the "moral authority."

This phenomenon has many parallels in the field of autism. Select groups have positioned themselves as the sole experts of autism, their way the only way, and the lone voice of morality. They effectively shut down alternative lines of research in autism or approaches by being the loudest or most powerful voice. This is accompanied by vicious attacks, harassment, and doxxing of those they consider "others." This helps maintain their positions of power, fame and profit - (Perhaps they also get a rush out of this bullying). 

The irony is that existing evidence-based practices are often weaponized or misrepresented to justify their stance. Just because something isn't fully explainable or understood yet doesn't mean it should be dismissed as pseudoscience. Rather, it represents science-in-progress. Complex phenomena like autism often defy simple cause-and-effect explanations, waiting for the right methods, technologies, or even an evolution in our scientific thinking to fit neatly into an explainable model.

A 'certification degree' or Ph.D. does not make one all-knowing about a highly heterogeneous condition like autism. We are all still trying to figure autism out. If we had all the explanations and solutions, the quality of life for all autistic individuals would be infinitely better. It’s crucial to remember that science is a process, not a destination. It thrives on curiosity, openness, and the willingness to challenge existing paradigms. True progress in understanding autism, and indeed any complex phenomenon, requires humility, collaboration, and an openness to diverse perspectives.

Let's resist the allure of false authority and the spread of negativity. Instead, let's foster a culture of inquiry and respect, where every voice is heard, and every avenue of research is explored. Only then can we hope to make meaningful progress in understanding and improving the lives of those within the autism community and beyond.


The Role of Parvalbumin Neurons in Autism

A PlainSpeak version for the Lay Reader

The Role of Parvalbumin Neurons in Autism

Background

Scientists believe that a special type of brain cell called Parvalbumin (PV) interneurons (INs) may play a key role in autism. Even though autism can be caused by many different genetic and environmental factors, people with autism often show similar behaviors. This suggests that there might be a common issue in the brain across different individuals with autism (1).

Understanding the role of PV+ interneurons in autism helps us see why many symptoms of autism occur, like sensory sensitivity and seizures. 

The Balance of Brain Signals

Our brains need a balance between "go" signals (excitation) and "stop" signals (inhibition) to work properly. In autism, it was first thought that there is too much excitation and not enough inhibition, leading to an imbalance. This imbalance could explain why some people with autism have seizures (4,5). However, this idea is too simple because many types of brain cells are involved in maintaining this balance.

What We Know About PV+ Cells in Autism

Researchers have found that PV+ cells in the brains of autistics are often not working as they should:

  • Fewer PV+ cells: There are fewer of these cells in the brain, and they produce less of a protein called parvalbumin.
  • Changes in brain waves: These cells help control brain waves called gamma oscillations. In autism, the power of these gamma waves is higher than normal.
  • Reduced activity: PV+ cells show less activity in response to visual signals.

PV+ cells are the most common type of inhibitory ("stop/slow down") neuron in the brain, but other types of neurons may also be involved in autism.

Brain Excitability and Sensory Sensitivity

When PV+ cells don't function properly, the brain becomes overly excitable and synchronized, making seizures more likely. This can also cause exaggerated responses to sensory inputs, like touch or sound. For example, in a mouse model of autism, the response to whisker movement is weaker in certain brain cells.

Sensory Overload

Autistics often experience sensory overload because their brains can't tune out irrelevant information. This may be due to a failure of brain cells to adapt to continuous stimulation (2).

Visual Processing

PV+ neurons are important for fine-tuning the way we see things, helping us to distinguish between different visual inputs.

Brain Waves and Communication

Increased gamma wave activity, which is linked to sensory and communication issues, is common in autism. PV+ cells help generate these waves, and their dysfunction leads to irregular brain activity patterns (3).


2 Versions of this Post

For the Science/Academic Reader

PlainSpeak for the Lay Reader

A short definition




References

  • 1.Contractor, A., Klyachko, V. A., & Portera-Cailliau, C. (2021). Reduced density and activity of parvalbumin interneurons in autism. Journal of Neurodevelopmental Disorders, 13(1), 1-15.
  • 2.Green, S. A., & Gu, Y. (2015). Sensory hypersensitivity in autism spectrum disorders. Current Biology, 25(18), R876-R879.
  • 3.Guyon, N., & Nahmani, M. (2021). Role of parvalbumin interneurons in gamma oscillations and sensory processing in autism. Frontiers in Neuroscience, 15, 692872.
  • 4. Hussman, J. P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. Journal of Autism and Developmental Disorders, 31(2), 247-248.
  • 5. Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2(5), 255-267.

A Dual Approach for Autism

 

 

NSF names 34 Vanderbilt students and alumni as 2024 graduate research fellows

 




Read at  https://news.vanderbilt.edu/2024/06/17/nsf-names-34-vanderbilt-students-and-alumni-as-2024-graduate-research-fellows

Jun 17, 2024

A total of 34 Vanderbilt University alumni, students and incoming students have been named National Science Foundation graduate research fellows for 2024.

The prestigious fellowship program assists exceptional graduate students pursuing research-based master’s and doctoral degrees across various fields, including science, technology, engineering, mathematics, STEM education and social sciences supported by NSF. Since its inception in 1952, the NSF GRFP has been a cornerstone of support for graduate students, providing financial aid through a $37,000 annual stipend and a $16,000 allowance for educational expenses, along with opportunities for professional growth and international research endeavors.

Vanderbilt’s 2024 NSF GRFP Scholars:
....
Hari Srinivasan, life sciences – neurosciences
...

The rigorous application process demands thoroughness and collaboration with students’ advisors, as students craft persuasive personal statements and research proposals. For the 2024 cycle, there were 2,037 fellowship offers in total, which is 518 less than the 2023 cycle. Additionally, in the 2024 cycle there were 1716 honorable mentions, 915 more than in the 2023 cycle.

 



https://www.dailycal.org/2018/03/15/first-transitions

E-I Imbalance Theory of Autism

The E-I Imbalance hypothesis posits that an imbalance between excitatory and inhibitory signaling in the brain contributes to the sensory, cognitive, and behavioral features of autism.

PlainSpeak: This idea says that a mix-up between signals that excite and calm the brain can cause the sensory, thinking, and behavior issues in autism.


Read in more detail about E-I Imbalance


Monotropism and Special Interests - what you need to know

In  plain language for lay audience 

When we talk about autism, two important ideas often come up: monotropism and special interests. These ideas help explain how autistic people focus on things they love, but they mean slightly different things.

Monotropism is a way of thinking that means autistic people tend to focus really hard on a few things at a time. Imagine being able to dive deeply into something you’re really interested in, like a favorite hobby or subject. This can make autistic people very knowledgeable and passionate about their interests. But it can also make it tough to switch focus to other things they find less interesting.

Special Interests are those specific things that autistic people get really excited about. These can be anything from dinosaurs to trains, from art to computers. These interests often last for a long time and can bring a lot of joy and comfort. They’re a big part of who they are. Sometimes, though, other people might not understand why these interests are so important to them.

So, what’s the difference? Monotropism is about the way autistic people focus their attention, while special interests are the actual things they focus on.

Scientists think that the way autistic brains work makes this deep focus possible. It’s not just a quirky behavior – it’s how their brains process information. This means autistic people often put a lot of mental energy into their favorite things, which can make it hard to deal with tasks they don’t enjoy as much.

By understanding monotropism and special interests, we can better support autistic people. We can appreciate their focus and passion while also helping them with strategies to manage tasks they find challenging. 

Two Versions of this post


Research headed to SfN 2024

My research abstract accepted at Society for Neuroscience, SfN 2024 conference. 

Dear Hari Srinivasan
Thank you for submitting a Scientific Abstract for Neuroscience 2024 taking place Oct 5-9 in Chicago. 
-------

For more on my conference experience in Oct click on the link below




Understanding the E - I Imbalance Theory of Autism

In PlainSpeak for the Lay Reader
Caveat: Always keep in mind there is no single theory that perfectly explains autism.

The Excitatory-Inhibition (E-I) Imbalance idea says that a mix-up between signals that excite and calm the brain can cause the sensory, thinking, and behavior issues in autism.

What Can Cause the E-I Imbalance?

Too Much Glutamate and Overactive Exciting Neurons
Glutamate is the main chemical that makes brain cells more active. If there is too much glutamate or the exciting neurons are too active, it can make the brain overly excitable. This can cause people with autism to be very sensitive to sounds, lights, and other sensory inputs and make thinking and processing information harder.

Not Enough GABA to Calm the Brain
GABA is the main chemical that calms brain cells. In autism, there can be less GABA, problems with GABA receptors, or less active calming neurons. This means the brain doesn’t have enough calming signals to balance the exciting ones, making the E-I imbalance worse.

Problems with Exciting and Calming Neurons
Neurons are the cells in the brain that send and receive signals. Exciting neurons make other neurons more active, while calming neurons reduce activity. In autism, there might be differences in the number, function, or connections of these neurons. For example, changes in certain calming neurons can disrupt the brain’s local circuits, leading to more excitement and less calming.

Important Development Periods
The E-I balance is especially important during key development times when the brain is growing and changing rapidly. If the balance is off during these times, it can affect brain development and function in the long term. This can impact learning, memory, and the formation of proper brain connections.

Changes in Synaptic Proteins

Proteins like neuroligins and neurexins help brain cells stick together and send signals. In autism, changes or problems with these proteins can lead to abnormal connections between brain cells, affecting the E-I balance.

Ion Channel Problems
Ion channels help neurons send signals by letting ions in and out. Ions are tiny charged particles, like sodium, potassium, or calcium, that neurons need to function properly. In autism, problems with these ion channels can change how neurons send signals, affecting the E-I balance.

Problems with Synaptic Plasticity
Synaptic plasticity is the ability of connections between brain cells to get stronger or weaker over time. This is important for learning and memory. Long-term potentiation (LTP) is when these connections get stronger with activity, helping with learning new things. Long-term depression (LTD) is when these connections get weaker, which helps remove unnecessary information. In autism, problems with LTP and LTD can make it harder to learn and remember things.

Role of Supporting Brain Cells (Astrocytes and Microglia)
Astrocytes and microglia are supporting cells in the brain that help maintain E-I balance. Astrocytes manage levels of glutamate and GABA, while microglia help prune synapses during development. Pruning is like trimming a tree; it removes extra connections between brain cells to make the network more efficient. Problems with these cells can lead to too much excitation or not enough inhibition.

Genetic and Epigenetic Factors
Our genes, which are like instructions for how our body works, can influence the E-I balance. Changes in how these genes are turned on or off can also affect the brain. Many genes linked to autism affect how brain cells connect and communicate, leading to differences seen in autism.

Environmental Influences
Things in the environment, like exposure to toxins, infections, and stress during pregnancy, can impact the E-I balance. These factors can change how the brain develops and works, leading to long-term effects on brain signals.