Showing posts with label Multisensory Integration. Show all posts
Showing posts with label Multisensory Integration. Show all posts

Research time - Motion Tracking

 Checking out some new gadgets and tech being set up at our soon to be 'immersive VR cave" at our research lab. The optictrack glove has sensors on to track hand movements movements seen in the video when I moved my hand up and down. Will be using some of this cool tech in my research on Peri Personal Space. Still being set up so more to come.







Stims and Multisensory Integration

In the context of multisensory integration, autism stims or self-stimulatory can be understood as a way to manage and regulate sensory input from their environment. Multisensory integration refers to the neurological process where the brain combines information from different sensory systems to form a comprehensive understanding of one's surroundings. For autistics, this integration process can be atypical, leading to unique sensory experiences and responses.



Understanding Stims in Relation to Multisensory Integration:
  • Compensating for Sensory Processing Differences: Autistics may experience hypersensitivity or hyposensitivity to sensory stimuli. Stims can be a method to either dampen overwhelming sensory input or to seek additional stimulation to compensate for under-responsiveness.
  • Creating Predictable Sensory Experiences: Repetitive behaviors, such as rocking or hand-flapping, provide a predictable and controllable sensory experience in a world that can often feel unpredictable and overwhelming. This predictability aids in multisensory integration by providing a constant sensory feedback loop.
  • Facilitating Focus and Concentration: For some, engaging in stimming behaviors can enhance focus and help filter out extraneous sensory information. This self-regulation can aid in better integrating relevant sensory inputs.
  • Self-Soothing and Emotional Regulation: Stimming can be a way to calm oneself in response to sensory overload. It serves as a mechanism to regulate emotional responses that arise from difficulties in processing multisensory information.
  • Enhancing Sensory Discrimination: Certain stims may help autistics to differentiate between different sensory inputs. For example, tactile stims like rubbing textures might help in focusing on specific tactile sensations amidst a confusing array of sensory data.
  • Aiding in Social and Communicative Functions: In a social context, stimming might assist autistics in managing the multisensory complexity of social interactions, such as processing visual, auditory, and spatial information simultaneously.

Implications for Support and Intervention: 
(THIS AREA IS STILL NOT WELL UNDERSTOOD & VERY MUCH A WORK IN PROGRESS)
  • Personalized Sensory Environments: Creating environments that take into account an individual's specific sensory processing needs can reduce the necessity for stimming as a compensatory mechanism.
  • Sensory Integration Therapy: In theory this therapy is supposed to help autistics develop better skills to integrate and process multisensory information, potentially reducing the reliance on stimming behaviors for sensory regulation. But there is a lot of confusing and conflicting information about what exactly constitutes SIT. 
  • Educational and Behavioral Strategies: Incorporating multisensory learning and behavioral strategies that align with an individual's sensory preferences can enhance their ability to process information from multiple senses simultaneously.

Related Posts

Saltafossi 2023 - The impact of cardiac phases on multisensory integration

 






The paper investigates how the cardiac phase affects multisensory integration, which is the process that allows information from multiple senses to combine non-linearly to reduce environmental uncertainty. The study found that the impact of the cardiac phase on multisensory integration may be specific for stimuli including somatosensory (i.e., tactile) inputs