Impact of a Racially Diverse Environment on Cross Race Effect

Full Paper at

Impact of a Racially Diverse Environment on Cross Race Effect

Hari Srinivasan
Seth Hammond
Sih-Ting Liao
Summer Hadla
Psychology 101, Research Methods in Psychology
UC Berkeley



Abstract
The well-investigated phenomena of Cross Race Effect (CRE) is the claim that all people have an inherent in-race bias in terms of facial recognition. Previous literature has suggested that environment can influence CRE. The current study was conducted by surveying participants from UC Berkeley. The intent was to test whether immersion in the culturally diverse environment of UC Berkeley would reduce CRE in its students. Participants were divided by grade level and tested on whether their grade level affected how easily they detect facial differences in other races. However, after running a two-way ANOVA test, results showed that there were no significant differences between each race or year level. A few outside variables that may have affected our data must be considered, such as the difficulty in gathering participants, and the limited time given to conduct this study. Given more time and a larger sample population, future studies might bear more statistically significant results. Nevertheless, these results give hope that a more diverse environment may help our society become adept to cultures and races from around the world, thereby building tolerance and reducing discrimination.

Keywords: CRE, Cross Race Effect, in-race bias, diversity, environmental impact

When Exams get too stressful

 An "Empathy Tent" in front of Sproul Hall


An ear or two
A heart that listens too
When exams loom large
Need an electric recharge
Empathy tent finds you. 

Bonfire Rally 2017

The Big Game is the annual football game between UC Berkeley and Stanford. The Cal-Stanford  football rivalry dates back to 1892. Former President Herbert Hoover was the student team manger for Stanford that time and tickets sold out for the first game in San Francisco.  The Big Game was so popular that a large group of boys and men climbed onto the rickety roof of a nearby glass works factory to see the 1900 game. The roof collapsed killing 22 people. So there is quite a bit of history involved with the Stanford Axe as the  coveted trophy.

From the time of our orientation, there was a lot of buildup to this game.This year the much awaited game is at Stanford. The week before the  game is filled with Rallys. This includes the  Tree Chopping Rally on the steps of Sproul Hall on Tuesday. The X-mas Tree is the Stanford Mascot, so the Cal Mascot Oski the Bear was pretending to chop down the tree with an Axe. 

Friday was the Big Bonfire Rally at the Greek Theatre. OMG! It was a super grand affair with a huge turnout.  The Cal Chant was everywhere.
You know it. 
You tell the story
You tell the whole damm world this is Bear Territory.

Stanford is what?
Give that Axe back.

Alas Cal lost the Axe again this year - but the Rally was fun.






From the fourth floor of MLK building

I see...
A bird flies by
Waterproof wings flap in the rain
I wave and it dips a wing
Fly with me if you will.
We have places to see
Stretch your wings and fly with me

I see...
Students walking Sproul Plaza below
Hoods on, umbrellas an optic cup
backpacks bent against the rain
They have places to go
Telegraph and Durant, its lunchtime

I see...
the pep rally team outside Sproul Hall
Promoting Bonfire Rally this Friday
Students needed, muster the troops
They have work to do,  shine or rain
The Big Game is Saturday

I see ...
a school bus parked on Bancroft
Braving the rain, excited kids
Colorful coats in liquid sunshine
They have lots to learn
Cal is a fascinating university

I see..
tree leaves red, brown and gold
Giving large evergreens company
Calmly they stand
No rush to go places
That task left to students below them

I see ...
Sather Tower point to heavens above
100 years standing, a campanile.
Hourly reminder to scholars and seekers
The 23 Bells of the carillon chime
What's your plan, young man?

I see...
West Cresent of Oxford and University
Grass glistening in new raindrops.
I must now go.
My next lecture is at Li Ka Shing next door

South African Dance Festival

Last night I got to see the South African Dance Festival at Zellerbach Hall. Lower Sproul looks quite nice at night all lit up. There were a couple of dance groups practicing their routines. Other students were busy with their laptops inside the MLK building - studying hard, one presumes. 

  


The performance  inside Zellarbach featured 2 dance companies from South Africa. The first was a musical dance drama about the trials and tribulations of miners; how they miss their families, their wives, the bonds they form with each other and the joy that they strive for in their life underground. All this was told through the vibrant,  heady and rhythmic beat of gumboots pounding on the ground.  One of the troupe members rendered an amazing serenade to the love he'd left behind. Gumboot dancing or Isicatholo originated in 1880s when young black men were sent off to gold mines by European settlers in South Africa. The miners wore gumboots and rattled their foot chains to communicate with each other. The Stimela Gumboot musical by the Gumboots Musical company was very novel  and  quite heart-stirring. The second performance by the Pantsula Dance was more contemporary addressing many of the unemployment and social problems of young men in modern day South Africa. The Pantsula dance originated as a sort of protest dance against apartheid and other injustices.  It had a  a lot of electronic and pop elements in addition to some pretty nifty footwork. Very catchy and quite entertaining.   (Below are some youtube videos of the dances)



Overall a very entertaining night!

Overprescription of Benzodiazepines in the Autism Population

Overprescription of Benzodiazepines in the Autism Population
Hari Srinivasan
Psych C19 Drugs and The Brain, UC Berkeley, Prof David Presti. Nov 2017




Abstract
Benzodiazepines belong to the powerful sedative-hypnotic family and are some of the most widely prescribed class of drugs today.  There is, however, a serious overprescription of benzodiazepines in the developmentally disabled populations like Autism Spectrum Disorder without regard to the long-term health consequences.  Studies have shown that adult autistics have significantly fewer GABAA receptors and that benzodiazepines work by binding to the GABAA receptors, thereby potentiating the GABA neurotransmitter and producing its anxiolytic effects. Benzodiazepines are very effective in the short term so there is resistance to reducing medication as there is often a reversal of symptoms or other side effects.  Long-term usage even at moderate doses can impair cognition and memory and bring about tolerance and dependence. As the growing autism population ages, they may also be subject to the reported effects of benzodiazepines on the elderly, such as increased risk of hip fracture, Alzheimer’s, and dementia. In addition, studies have suggested that benzodiazepines themselves may contribute to behavioral symptoms which could be mistaken for other psychiatric behaviors which need to be further treated. This is ironic as benzodiazepines are given to mitigate these very symptoms. This paper suggests that more research is needed into understanding the underlying physiological underpinnings rather than just medicating based on observable symptoms or observable side effects. For instance, further investigation is needed into better and reliable ways to measure neurotransmitter levels so that dosages can be tailored more specifically for the individual and monitored, thus minimizing long-term effects.
Keywords: Benzodiazepine, Autism, GABA, Neurotransmitters, benzodiazepine side effects





Overprescription of Benzodiazepines in the Autism Population
The use of medications like benzodiazepines is a growing problem in the developmentally disabled such as Autism Spectrum Disorder, who practically speaking often have less say on what medications are administered to them. From a young age, there is often pressure to medicate such individuals from schools, teachers, support staff, and therapists who often have to manage multiple students simultaneously.  Medication is often seen as a quick fix to mitigate disruptive or maladaptive social behaviors. Families too turn to medication in the hopes that it will improve the quality of life for the affected family member.


Benzodiazepines have been around since the 1960s with the introduction of chlordiazepoxide (Librium) in 1960, diazepam (Valium) in 1964 and a slew of other benzodiazepines since. Though they belong to the powerful sedative-hypnotic family, they are one of the most widely prescribed classes of drugs today. Prescriptions have, for instance, increased from 4.1% in 1996 to 5.6% in 2013 (Bachhuber, Hennessy, Cunningham, & Starrels, 2016). There is a serious overprescription of benzodiazepines in the vulnerable population of the intellectually disabled like Autism Spectrum Disorder, without regard to the long-term health consequences for these individuals.


Neural Mechanism of Benzodiazepines
Benzodiazepines are believed to work by potentiating GABA receptors at the chemical synapses in the brain. The neurotransmitter GABA inhibits the action of neurons by binding to GABAA receptors, thus producing its calming, sedating, anxiolytic, anticonvulsant, and vasodilation effects.  Benzodiazepines are not GABA agonists, rather they act as positive allosteric modulators (PAMs) since they can only act when GABA is bound at the receptor. Benzodiazepines actually bind to a subset of the GABAA receptor complex called BzR (benzodiazepine receptors). This serves to increase the inflow of chlorine ions at the ion channel, hyperpolarize the membrane potential of the neuron and reduce the chances of action potential. In effect, it makes the GABA receptor less sensitive. Since there are benzodiazepine receptors all over the brain connected to different neural circuits, there is bound to be variation in individual physiological responses to the drug.  Besides GABA, benzodiazepines also potentiate other neurotransmitters. For instance, clonazepam also acts as a serotonin agonist. In addition, benzodiazepines also stimulate the peripheral nervous system (PNS) as benzodiazepine receptors are found in the PNS tissues and glial cells. This could well account for its muscle relaxant effects (Griffin, Kaye, Bueno & Kaye, 2013).


Benzodiazepines are classified according to their elimination half-life action in the body. Shorter-acting ones (less than 12 hours) include midazolam (just 10 minutes duration of action) and alprazolam. Intermediate-acting ones (12-40 hours) include clonazepam and lorazepam, and longer-acting ones (40-250 hours) include diazepam. Benzodiazepines are further metabolized which extends their duration of action. For instance, diazepam metabolizes into nordiazepam, oxazepam, and temazepam. The speed of onset also differs for each. Midazolam (Versed) takes just 5 minutes to work while clonazepam (Klonopin) takes a few hours, though the latter also stays longer in the body (Griffin et al., 2013).


What makes benzodiazepines attractive to use is their relatively high therapeutic index when compared to barbiturates. This is believed to be due to the fact that benzodiazepines can open chloride ion channels only in the presence of GABA, unlike Barbiturates or propofol which can open the chloride ion channel independently.  When barbiturates are combined with alcohol it can cause respiratory depression to a degree that a person can stop breathing. The therapeutic index runs in the 100’s for benzodiazepines with diazepam at exactly 100. A high therapeutic index implies that it is difficult to overdose on benzodiazepines.  The rare cases of overdoses are treated with Flumazenil, which acts as an antagonist at the benzodiazepine binding sites (Tulane University School of Medicine, 2017).


It is not surprising therefore that benzodiazepines are often used to address symptoms associated with learning disabilities like Autism Spectrum Disorder.  In fact, a study by Oblack, Gibbs and Blatt (2009) found that the adult autistics had significantly fewer GABAA receptors and benzodiazepine sites when compared to the neuro-typical adults. Tomography results (Mendez et al., 2013) further indicate that there are reduced levels of GABA (specifically GABAA α5 subtype) in the nucleus accumbens and amygdala. There is a delicate balance in the brain between neuron excitation and neuron inhibition and their outputs to different regions of the brain. This balance, in turn, requires just the right amount of energy to the nerves. Disturbances in this mechanism could well be the underpinnings of the socio-emotional behaviors seen in Autism.


Effects of Benzodiazepines
Indeed, benzodiazepines are very effective in the short term. They are so effective that their use is continued to prolong the feel-good effects, especially on mood and anxiety.  In the meantime, tolerance builds up as does dependence. It is like being caught between Scylla and Charybdis, can’t live with them, can’t do without them either as other medications are less effective. It is ironic indeed that benzodiazepines are powerful enough to be classified as Schedule II drugs (“high potential for abuse”), yet are classified as Schedule IV (“low potential for abuse”) due to their prevalent use (Donaldson, Gizzarelli & Chanpong, 2007).


The study by Oswald and Sonenklar (2007) draws attention to the fact that almost 70% of children over age 8, with the Autism Spectrum diagnosis, were prescribed some form of psychoactive medication including benzodiazepines. Benzodiazepines are often given to this population for co-morbid conditions such as bipolar disorder, severe anxiety, obsessive compulsive behaviors and mood swings that can cause disruptive, aggressive or even self-injurious behaviors.


What is even more troubling is a study by Kalachnik, Hanzel, Sevenich and Harder (2002) which suggests that many of these behavioral symptoms could be caused by the benzodiazepines themselves and then be mistaken for other psychiatric behaviors which need to be further treated. Another study by Albrecht et al. (2014) had suggested a link between benzodiazepines and aggression, especially diazepam and alprazolam (Xanax). The effect is to synergistically disinhibit, especially if the diazepam were combined with other medications or substances such as alcohol, causing any bottled-up anger to come out. The irony is that benzodiazepines are often given to this population in the first place to mitigate these very behavioral symptoms.


This population is often also highly susceptible to dependence and addiction. There is resistance to stopping or reducing medication as there could be a resurgence of symptoms which are hard for the individual, their families or support staff in their social settings to cope with.  Withdrawal symptoms can include increased panic and anxiety, sweating, headache, palpitations and muscle stiffness (Pétursson, 1994). Withdrawal from higher doses could even result in seizures and psychosis. As a result, low to therapeutic doses are often continued long term to alleviate withdrawal symptoms which increases the risk of physical dependence (Busto & Sellers, 1991).  Inevitably, powerful drugs are also often accompanied by side effects and the benzodiazepines are no exception.  The toxicology list by the Tulane University’s School of Medicine include some worrying effects such as, “drowsiness, confusion, ataxia (loss of voluntary body movement), nystagmus (uncontrolled eye movements), slurring of speech, amnesia, hypotension and respiratory depression,” (2017). In addition, long term usage has shown to have negative effects on memory and cognition.


One in eighty-eight children are diagnosed with autism spectrum disorder today and the number just continues to increase (Center for Disease Control, 2016). Much of the current therapeutic interventions and research focus on the early years to take advantage of the neuroplasticity of a young brain. However, not every child benefits from the current array of therapies. This means that the main recourse for most adult autistics who did not benefit from early therapy is medication to control symptoms.  Recent research has however shown that neuroplasticity continues well into the adult years (Garrett, 2013). What is often overlooked is that all these growing thousands of young children with autism will age into adults with autism and then eventually the elderly with autism. Aging will bring about its own set of health issues with decreased immunity and reduced disease fighting ability. Wang, Bohn, Glynn, and Robert (2001) report that the use of even modest doses of benzodiazepines for over a month increased the risk of hip fracture by 50% in the elderly. Other studies have found links between continued use of benzodiazepines and increased risk of Alzheimer's and dementia (deGage et al., 2014). All this does not bode well for the Autism population who are already prone to a myriad of health issues, often due to a compromised immune system, such as seizures, allergies, respiratory issues, endocrine issues, digestive problems, sleep disorders, sensory dysregulation and bacterial or viral infections.
Conclusions and Future Study
There is clearly an overuse of medications such as benzodiazepines in the Autism population, without regard to consequences of long-term health effects. This is especially significant in light of the fact that the line between benzodiazepines alleviating symptoms and causing additional symptoms seem to be blurred in the Autism population. Currently, medication is based on observable outward behavioral symptoms and observable side effects. It is a shot in the dark as to whether they work or not, so various permutations, combinations, and substitutions are tried by medical specialists in an effort to mitigate maladaptive symptoms. The need of the hour is more research into understanding the underlying physiological underpinnings rather than just symptom-based medication. For instance, further investigation is needed into better and reliable ways to measure neurotransmitter levels so that dosages can be tailored more specifically for the individual and monitored, thus minimizing long-term effects.


References
Albrecht, B., Staiger, P. K., Hall, K., Miller, P., Best, D., & Lubman, D. I. (2014). Benzodiazepine use and aggressive behaviour: A systematic review. Australian & New Zealand Journal Of Psychiatry, 48(12), 1096. doi:10.1177/0004867414548902
Bachhuber, M. A., Hennessy, S., Cunningham, C. O., & Starrels, J. L., (2016). Increasing benzodiazepine prescriptions and overdose mortality in the United States, 1996–2013. AJPH. 106(4), 686-688. doi:10.2105/AJPH.2016.303061
Busto, U., & Sellers, E. M. (1991). Pharmacologic aspects of benzodiazepine tolerance and dependence. Pubmed. Retrieved November 10, 2017, from https://www.ncbi.nlm.nih.gov/pubmed/1675689
Centers for Disease Control. (2016). Autism spectrum disorder (ASD). Retrieved November 10, 2017, from https://www.cdc.gov/ncbddd/autism/data.html
de Gage S.B., Moride, Y., Ducruet, T., Kurth, T., Veroux, H., Tournier, M., Pariente, A., & Begaud, B. (2014). Benzodiazepine use and risk of alzheimer’s disease: case-control study. British Medical Journal. 349:5205 https://doi.org/10.1136/bmj.g5205
Donaldson, M., Gizzarelli, G., & Chanpong, B. (2007). Oral sedation: A Primer on anxiolysis for the adult patient. Retrieved November 07, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1993866/
Garrett, M. (2013, April 27). Brain plasticity in older adults. Psychology Today. Retrieved November 10, 2017, from https://www.psychologytoday.com/blog/iage/201304/brain-plasticity-in-older-adults
Griffin, C. E., Kaye, A. M., Bueno, F. R., & Kaye, A. D. (2013). Benzodiazepine Pharmacology and central nervous system–mediated effects. Retrieved November 07, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684331/
Kalachnik, J. E., Hanzel, T. E., Sevenich, R. & Harder H. R., (2003)  Brief Report: Clonazepam Behavioral Side Effects with an Individual with Mental Retardation. Development of Autism and Developmental Disorders. 33(3), 349-354 https://doi.org/10.1023/A:1024466819989
Mendez, M. A., Horder, J., Myers, J., Coghlan, S., Stokes, P., Erritzoe, D., Howes, O., … Nutt, D. (2013). The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: A pilot [11C]Ro15-4513 positron emission tomography study.  Neuropharmacology,  68, 195-201. https://doi.org/10.1016/j.neuropharm.2012.04.008
Oblak, A., Gibbs, T. T., & Blatt, G.J. (2009), Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Res, 2: 205–219. doi:10.1002/aur.88
Oswald, D. P., & Sonenklar, Neil. A.. (2007). Medication use among children with autism spectrum disorders. Journal of Child and Adolescent Psychopharmacology, V 17(3), 348-355. https://doi.org/10.1089/cap.2006.17303
Owen, R.T. & Tyrer, P. (1983). Benzodiazepine dependence. Drugs 25 (4): 385-398. https://doi.org/10.2165/00003495-1983
Pétursson, H. (1994). The benzodiazepine withdrawal syndrome. Pubmed. Retrieved November 10, 2017, from https://www.ncbi.nlm.nih.gov/pubmed/7841856
Tulane University School of Medicine. (2017). Benzodiazepine Toxicology. Retrieved November 06, 2017, from http://tmedweb.tulane.edu/pharmwiki/doku.php/benzodiazepine_toxicology

Wang, P. S., Bohn, R. L., & Glynn. Robert. J. (2001). Hazardous benzodiazepine regimens in the elderly: effects of half-life, dosage, and duration on risk of hip fracture, The American Journal of Psychiatry, V 158 (6),892-898. https://doi.org/10.1176/appi.ajp.158.6.892



Music@Cal

Love all the music I get around Cal.

11/9/17 Jazz and an Apple
Enjoying a lunchtime jazz musical performance in the Lower Sproul Plaza at Cal,  all while munching an apple.
   


11/14/17 An Acapella group at Lunchtime
11/16/17 A Jazz Lunchtime


A Musical Salesman

Corner of Telegraph and Durant
Selling his wares was he
Students stop to listen
Drawn to music with a beat
Catchy indeed!

A very entertaining and musical salesman at the corner of Telegraph and Durant, pitching his wares

Just Another Protest at Cal

Something or the other is going on outside Sproul Hall at UC Berkeley every day. Many a time it’s in the form of a protest. 

Today had to be the craziest of protests. A group of students were protesting vegan-ism and shouting “Save the veggies! and "Down with vegan-ism”. A guy in a carrot costume was inside a cage.

It certainly was funny. Maybe it was a parody counter-protest to the caging animals protest. 
A counter-protest for the sake of protest? Just another protest at Cal!




In sharp contrast was the animal caging protest at the beginning of the semester. 




--------------------------------------------------------------------------------

Down with veggies video!!!


This is in contrast to this protest in August!!! 

Coffee Beans


I tasted coffee beans for the first time in my life today. All in the name of learning about how caffeine affects our brain. Professor David Presti, who teaches “Drugs and the Brain,” at Cal, brought a whole bag of Peet’s Dark Roast Coffee Beans and passed them around for the class to taste. I’ve never tasted coffee before, let alone coffee beans, so this was a new experience. It was crunchy, kind of over burnt and somewhat bitter to the tongue. But I ate another bean anyway. I can see why folks love it so much. The effect was pretty immediate. I was more awake or maybe the immediate effect was due to the the bitterness.


The aroma, I’m familiar with, with my grandparents and most relatives all habitual coffee drinkers. My parents managed to kick the caffeine habit only recently after suffering the withdrawal symptoms of headache and fatigue. The coffee aroma is one I associate most with my grandparents. My Srinivasan grandpa who lives in Chennai, gets up before everyone else, receives the milk from the milkman, boils the milk and then brews a fresh batch of coffee decoction in a manual coffee filter. I’ve rarely seen grandpa in the kitchen otherwise, he really wants his coffee made the right way I guess. While in Chennai, I  wake up to the smell of coffee (and other things being prepared in the kitchen).  South Indian coffee looks different from the coffee ones sees in the coffee makers in the offices and restaurants here. It’s thicker as it has some chicory as well. Whenever my grandparents have visited the US, they’ve  brought coffee powder with them, as they did not prefer the local US brands. My other late Raghavan grandpa was also a coffee aficionado. He liked his coffee black without any sugar even and it had to be brewed just right. The coffee was not be be put on the stove or microwave directly to warm, rather the decoction had to warmed up in a hot water bath, else the taste would be spoiled.  During one of his visits to the US, he had one of the specialty coffee shop guys give him sample tastes of almost 2 dozen types of coffee beans before he found he kind of liked. My grandma would say that on a train journey, my  grandpa would keep stopping the coffee vendor who walked up and down almost every hour or so and ask for refills. At weddings, the coffee tray makes a regular appearance throughout the day.
Chemically, caffeine is one of the methylated xanthines. It’s an antagonist for the inhibitory neurotransmitter Adenosine. Inhibitory means slowing down of neural activity (or firing them up) while an antagonist is a molecule that blocks the action of the neurotransmitter at the receptor.. When Adenosine binds at the receptors it causes you to be calmer (helps sleep)  in addition to vasodilation or opening up of blood vessels (which allows for more oxygen flow). By blocking adenosine, caffeine causes the stimulating effects that is associated with coffee such as alertness, increased heart rate and increased BP.


One cup of 7 oz coffee or tea contains almost 100 mg of caffeine. But the giant sized drinks sold these days are almost 12oz, so extrapolate the caffeine. Apparently the so called decaf still has 3mg of caffeine. Energy drinks like Rockstar and RedBull have 120mg of caffeine and the tiny 5 Hour Energy Drink has a whopping 200mg.  Students have gone to the ER after a few of those high powered drinks - increased heart rate.  


A side note of interest was the Peet (of Peet’s Coffee) is from Berkeley and started his company in the 1960s. (Peet’s is now owned by a German Company.) Peet even showed the Starbucks guys how to make coffee.

Being Halloween, Prof Presti opened with a picture of a giant pumpkin stuck on top of the spire of the Campanile (Sather Clock Tower) in 2000 as part a Halloween Prank. The pumpkin had a giant “Live” carved into it. Wonder how they managed to get it up there. Apparently it was quite the spectacle till maintenance managed to get it down.