What is LTP and LTD and how do they relate to Autism?

PlainSpeak. In Plain Language for the Lay Reader

Our brain cells (neurons) connect with each other through synapses, which are like tiny bridges for communication. These connections can change in strength, helping us learn and remember. Two key ways these connections change are Long-Term Potentiation (LTP) and Long-Term Depression (LTD).

  • LTP: This is when the connection between two neurons gets stronger. Think of it like a friendship that grows stronger the more you interact.
  • LTD: This is when the connection weakens, similar to a friendship that fades when you stop interacting.

Hebbian Plasticity

Hebbian plasticity is a rule that explains how these changes happen: "cells that fire together, wire together." This means that if two neurons are active at the same time, their connection strengthens (LTP). If one neuron is active while the other is not, their connection weakens (LTD).

How LTP and LTD are Different in Autism

Research has shown that people with autism often have differences in how LTP and LTD work, which can affect learning and behavior:

  1. Memory and Learning:

    • Studies on animals have shown that the hippocampus, a brain area crucial for memory, has trouble with LTP in autism. This might explain some learning difficulties seen in autism (Rubenstein & Merzenich, 2003; Bourgeron, 2015)​ (Frontiers)​​ (Nature)​.
  2. Movement and Coordination:

    • The cerebellum, which helps control movement, shows problems with LTD in autism. This can lead to issues with coordination and motor skills (Fatemi et al., 2012)​ (Nature)​.
  3. Genes and Synapses:

    • Certain genes that help keep synapses strong and flexible can be different in people with autism. For example, genes like SHANK3 and NRXN1 are important for synaptic strength. Changes in these genes can disrupt the balance of LTP and LTD, affecting how neurons communicate (Durand et al., 2007; Südhof, 2008)​ (Frontiers)​​ (Nature)​.
  4. Role of Dopamine:

    • Dopamine is a chemical in the brain that helps regulate mood and movement. It also affects LTP and LTD. In autism, dopamine might not work the same way, influencing learning and behavior (Yagishita et al., 2014)​ (Frontiers)​.

Understanding these differences helps scientists find better ways to support autistics, aiming to improve learning, memory, and coordination.

2 versions of this post

PlainSpeak. Plain Language for the Lay Reader

For the Academic/Scientific Audience



Remembering Judy. We miss you.

Remembering Judy who passed away a year ago this day. We miss you. 

=======

Back in 2019 I had the opportunity to interview the legendary disability civil rights activist, Judy Heumann, for UC Berkeley's "The Daily Californian".  Post: https://uniquelyhari.blogspot.com/2022/12/collaboration-cooperation.html 

Other posts on Judy in this blog can be found at https://uniquelyhari.blogspot.com/search?q=heumann


Benefits of Solutions


 Media Mention by India Autism Center Nayi Disha



 

Interoception

Interoception refers to the perception of internal bodily states and is a critical component of emotional awareness and regulation. In autism, interoceptive experiences can be distinct, potentially influencing the recognition and communication of needs and emotions (Quattrocki & Friston, 2014). This divergence in interoceptive processing underscores the complexity of understanding internal states and managing emotions in autism.

 



https://www.dailycal.org/2018/03/15/first-transitions

Your body position influences your emotional state

Research on posture and emotion has shown that adopting certain body positions can influence one's emotional state.

A study by Peper and Lin (2012) explored how body posture affects energy levels and the ability to generate positive and negative thoughts. They found that an upright posture can promote a more positive mood and energy levels, while a slumped posture can lead to increased feelings of depression.

Peper, E., & Lin, I. (2012). Increase or decrease depression: How body postures influence your energy level. Biofeedback, 40(3), 125-130.

Understanding Autism and The Cocktail Party Effect

 Plain Language Version for Lay Reader

The "cocktail party effect" is the brain's ability to focus on one sound, like a conversation, while ignoring other noises around us. Imagine you're at a busy party with many people talking. You can still listen to and talk with one person without getting distracted by the background noise. This skill involves parts of the brain that handle hearing and attention. The term was first used by scientist Colin Cherry in the 1950s.

How It Works

At a noisy event, like a party, you can focus on what one person is saying even though many other conversations are happening at the same time. This shows how we can pick out specific sounds in a noisy place. Scientists study this to understand how our attention and hearing systems work together.

Autism and the Cocktail Party Effect

For autistics, the cocktail party effect can work differently because of how they process sounds and focus their attention. Here are some key points:

  • Auditory Filtering: Autistics might find it harder to separate speech from background noise. This is sometimes called "auditory filtering problems."
  • Research Findings: Studies show that autistic children often have more trouble focusing on speech in noisy places compared to non-autistic children. This can lead to feeling overwhelmed by too much noise.
  • Brain Differences: The parts of the brain that deal with sound might work differently in autistic people. This can make it hard to tell apart important sounds (like someone talking to you) from background noise.

Why It Matters

Understanding these differences is important to help autistic people feel more comfortable in noisy places. Schools, workplaces, and social settings can use this knowledge to create better environments that consider their sensory needs.

Versions of this article: Academic/Scientific Audience, Plain Language for Lay Reader

Articles on other topics in #PlainSpeak

Appreciation

Got a nice note today. 


Just wanted to tell you the articles you are publishing are very well-written and insightful into the mind of someone with autism. I have a little brother who is autistic, so I am very fascinated by what you write as it helps me understand him better and makes me better equipped to help him navigate his grief at any time he may require. I sincerely appreciate and admire your work man, just wanted to reach out and let you know. Take care of yourself!

Our bodily states and emotional reaction

The relationship between bodily states and emotional reactions is a well-documented area in psychological research, with several studies supporting the idea that physical expressions and postures can influence emotions. Here are key findings from research that support the statement:

Facial Feedback Hypothesis:
The facial feedback hypothesis suggests that facial movements can influence emotional experiences. For example, the act of smiling can actually make people feel happier. A seminal study by Strack, Martin, and Stepper (1988) found that participants who held a pen in their mouths in a way that facilitated a smile (without being aware of smiling) rated cartoons as funnier than those who held a pen in a manner that prevented smiling. This study demonstrates the effect of facial expressions on emotional experience.

Strack, F., Martin, L. L., & Stepper, S. (1988). Inhibiting and facilitating conditions of the human smile: A nonobtrusive test of the facial feedback hypothesis. Journal of Personality and Social Psychology, 54(5), 768-777.

Posture and Emotion: Research on posture and emotion has shown that adopting certain body positions can influence one's emotional state. A study by Peper and Lin (2012) explored how body posture affects energy levels and the ability to generate positive and negative thoughts. They found that an upright posture can promote a more positive mood and energy levels, while a slumped posture can lead to increased feelings of depression.

Peper, E., & Lin, I. (2012). Increase or decrease depression: How body postures influence your energy level. Biofeedback, 40(3), 125-130.

Embodied Emotion: The theory of embodied emotion also supports the idea that bodily states influence emotional reactions. This perspective suggests that emotions are grounded in bodily sensations and that physical states can modulate emotional experiences. Niedenthal (2007) discusses how bodily sensations are integral to emotional processing, indicating that the body's posture, facial expressions, and actions can influence emotional states.

Niedenthal, P. M. (2007). Embodying emotion. Science, 316(5827), 1002-1005.

These studies collectively support the notion that bodily expressions and postures not only reflect our emotional states but can also influence them. The act of smiling can induce feelings of happiness, while adopting a slumped posture can contribute to feelings of depression, highlighting the intricate link between the physical body and emotional experiences.