MTT Mental Time Travel

Mental Time Travel (MTT) refers to the cognitive ability to mentally project oneself backward in time to recall past events or forward in time to anticipate future scenarios. In relation to autism, MTT research explores how individuals with autism may experience differences in episodic memory and future-oriented thinking, potentially leading to challenges in recalling specific personal events or imagining detailed future scenarios. [ Read in more detail on MTT]

PlainSpeak: Mental Time Travel (MTT) is our brain’s way of thinking back to past memories or imagining what might happen in the future. For people with autism, MTT might work differently, sometimes making it harder to remember personal events or imagine future plans. [Read in more detail, a PlainSpeak Version]

-------

Related Posts: [Autism Theories], [Sensorimotor], [Neuroscience of Autism]

No passion or urgency for solutions

Why is there NO PASSION OR URGENCY in seeking ACTUAL SOLUTIONS for Autism in the myriad conversations around autism?

I’m been waiting 2.5 decades for solutions, there is still NO MOVEMENT.

Monotropism and Special Interests in Autism - a Neurocognitive Perspective

Monotropism and special interests are closely related yet distinct constructs within the context of autism. Both concepts elucidate how autistic individuals exhibit profound engagement with specific domains, yet they underscore different facets of this phenomenon.

Monotropism is a cognitive model positing that autistic individuals exhibit a narrowed attentional focus on a limited set of interests, in contrast to the broader attentional distribution observed in neurotypical individuals. This heightened attentional focus facilitates deep expertise and significant enjoyment in specialized areas. However, it also results in attentional inflexibility, making it challenging for individuals to shift focus to other tasks or interests that do not align with their core interests. Monotropism provides a framework for understanding why autistic individuals often demonstrate exceptional proficiency in their areas of passion but may face difficulties with tasks that are outside these focal points.

Special Interests refer to the specific topics or activities that elicit intense focus and enthusiasm in autistic individuals. These interests often manifest as lifelong passions and serve as sources of comfort, identity, and competence. While special interests contribute positively to an autistic individual's life, they may be misunderstood or undervalued by others who fail to recognize their significance.

Neurocognitive explanations for both monotropism and special interests suggest that these behaviors are underpinned by fundamental differences in brain function and information processing in autistic individuals. Monotropism is thought to involve an atypical allocation of cognitive resources, where autistic individuals preferentially allocate their cognitive bandwidth to areas of high personal significance. This preferential allocation can be understood through the lens of predictive coding theories, particularly those emphasizing 'slow-updating' and 'high-precision' or 'hypoprior' mechanisms. These theories propose that autistic individuals maintain highly precise and stable internal models for their areas of interest, leading to profound engagement and expertise in these domains but also to challenges in adapting to new or less predictable tasks.

Special interests, on the other hand, may be conceptualized as emergent properties of these underlying neurocognitive mechanisms. The intense focus and enthusiasm associated with special interests reflect the heightened precision and stability of the predictive models governing these interests. The sustained engagement with special interests can be further understood through the framework of neural reward pathways, where dopaminergic activity reinforces behaviors that align with these precise internal models, thereby enhancing the salience and reward value of special interests.

Understanding both monotropism and special interests from a neurocognitive perspective can inform the development of supportive environments that leverage the strengths of autistic individuals. By recognizing and building upon their focused cognitive styles, educators, clinicians, and caregivers can implement strategies that accommodate attentional inflexibility while fostering opportunities for growth and adaptation. This approach not only acknowledges the unique cognitive profiles of autistic individuals but also promotes their overall well-being and societal inclusion.

Here are the different versions to help understand Monotropism and Special Interests 

Special Interests

Special interests in autism are intense and highly focused areas of interest that individuals may pursue with great enthusiasm and expertise, often serving as a source of comfort and a means of coping with sensory and social challenges.

PlainSpeak: Special interests are topics or activities that autistic people are extremely passionate about and know a lot about, which can be both a hobby and a way to feel comfortable.


Read more about Special Interests 

Monotropism

 Monotropism in autism refers to a cognitive tendency toward deep focus on specific interests or tasks, often leading to intense concentration and reduced awareness of broader contexts or multiple stimuli.

PlainSpeak: Monotropism is when someone, often an autistic person, focuses deeply on one thing, making it hard to pay attention to other things around them.

Read more about Monotropism 

Privilege of choice

Many of us with very visible autism disability DO NOT HAVE THE PRIVILEGE OF CHOICE, 
“to-disclose” or “not-to-disclose” our autism dx to ask for accommodations.

In fact, a very visible disability means many doors of opportunity are slammed shut in your face even before you have a chance to cross the doorway, or before you come to asking for accommodations on the other side. You are held to a much higher bar to even get anywhere close to the door. The question of choice does not even arise.

We desperately need SOLUTIONS, so ALL autistics get to access doors of opportunities.

Stress and Anxiety in Autism: The Role of the HPA Axis

Understanding Stress and Anxiety in Autism: The Role of the HPA Axis

Stress and anxiety are common experiences for everyone, but for individuals with autism, these feelings can be particularly intense and challenging. Understanding why this happens involves delving into the body’s stress response system, known as the hypothalamic-pituitary-adrenal (HPA) axis.

What is the HPA Axis?


The HPA axis is a complex network of interactions among three glands: the hypothalamus, the pituitary gland, and the adrenal glands. When we encounter a stressful situation, the hypothalamus releases a hormone called CRH (corticotropin-releasing hormone). This hormone signals the pituitary gland to release another hormone, ACTH (adrenocorticotropic hormone), into the bloodstream. ACTH then prompts the adrenal glands to produce cortisol, often referred to as the "stress hormone."

Cortisol helps our body manage stress by increasing energy levels, suppressing non-essential functions (like digestion), and preparing the body for a "fight or flight" response. Once the stressful situation is resolved, cortisol levels drop, and the body returns to a state of balance.

Stress and Anxiety in Autism

In Autism, the HPA axis can often be more reactive, leading to heightened stress and anxiety. Several factors contribute to this increased reactivity:
  1. Sensory Sensitivities: Many autistics have heightened sensory perceptions. Everyday noises, lights, or textures can be overwhelming, triggering a stress response more frequently.
  2. Social Interactions: Social situations, which can be difficult to navigate, often cause significant stress and anxiety. The effort required to interpret social cues and respond appropriately can be exhausting.
  3. Routine and Change: Many autistics thrive on routine and predictability. Unexpected changes or disruptions can cause considerable anxiety, activating the HPA axis.

The HPA Axis in Autism

Research suggests that the HPA axis in autistic individuals may function differently. Autistic people can have higher baseline levels of cortisol, indicating a chronic state of stress. Additionally, their cortisol levels might not return to normal as quickly after a stressful event, prolonging the period of anxiety and stress.
This heightened and prolonged stress response can have several implications:
  • Mental Health: Chronic stress and anxiety can contribute to other mental health issues, such as depression.
  • Physical Health: Elevated cortisol levels over long periods can affect physical health, leading to issues like weakened immune function and digestive problems.
  • Daily Functioning: High stress levels can interfere with daily activities, making it harder to concentrate, learn, and interact with others.

Supporting Stress Management

Understanding the role of the HPA axis in autism can help in developing strategies to manage stress and anxiety. Here are a few approaches:
  • Sensory Management: Creating environments that minimize sensory overload can help reduce stress.
  • Routine and Predictability: Maintaining a predictable routine can provide a sense of security and reduce anxiety.
  • Relaxation Techniques: Practices like deep breathing, mindfulness, and other relaxation techniques can help manage the body's stress response.
  • Professional Support:  **** See Caveat 
By recognizing the unique ways the HPA axis operates in autism, we can better support autistics

[*** Caveat from my personal experience as autistic is that most of autism therapy is geared towards maximizing profits and fame, and less about the autistic progressing, because lack of progress can easily be attributed as fault of the autistic, it's never the therapy or therapist. So why spend more and more $$$$ on therapy].



We need SOLUTIONS

We need action on ACTUAL SOLUTIONS for Autism.

Communication,  Biomedical physiology (physical/mental health), Precision Pharma, Healthcare, Sensorimotor, Policy Priorities, Funding Priorities, Supports services, myriad equity of access issues.

Lets work on leveling the playing field.

QUALITY OF LIFE means ALL Autistics get to avail of opportunities

The Access Ramp to Volunteering


https://www.dailycal.org/2018/04/05/access-ramp-volunteering


 

Neuroception - Safety Perception

Autism Lexicon - Neuroception

Neuroception is the brain's automatic process of evaluating environmental safety and threat levels, often dysregulated in autism, leading to heightened sensitivity to sensory input and potentially contributing to negative attribution bias and hostile attribution bias. [ Read in more detail on Neuroception here].

PlainSpeak: Neuroception is how our brain unconsciously decides if we're safe or in danger. In autism, this process can be heightened, causing some people to see everyday situations as more threatening, which can affect how they respond to others. [ Read in more detail on Neurocepton here]. 


e or t

I recently saw a social media post with arguments over "neurodiverse" v "neurodivergent."

Seriously!

Are we now going to start another decades-long, never-ending conversation, parallel to the disproportionate airtime spent on arguing "with autism" vs "autistic,"

Can we focus on ACTUAL SOLUTIONS FOR AUTISM  - benefits our Quality of Life on the ground
(There seems to be no similar passion or urgency in seeking solutions)

A mere 13% of the world is primarily english-speaking, but autistics exist all over the globe.

A majority of us desperately need SOLUTIONS, and care much less about re-arrangements of letters or grammar.


Understanding Short-Term Brain Changes and Autism

PlainSpeak Plain Language Version for the Lay Reader

Our brains constantly change how neurons (nerve cells) communicate to help us learn and remember things. Some of these changes happen very quickly and are known as short-term synaptic plasticity. This is when the connection strength between two neurons changes for a few seconds to a few minutes. Two important types of these changes are paired pulse facilitation (PPF) and paired pulse depression (PPD).

Paired Pulse Facilitation (PPF) happens when two signals arrive close together at a neuron connection, and the second signal is stronger than the first. This is because the first signal leaves behind some calcium, which helps release more chemical messengers for the second signal, making it stronger.

Paired Pulse Depression (PPD) is the opposite. When two signals come close together, the second signal is weaker. This happens because the first signal uses up most of the available chemical messengers, leaving fewer for the second signal.

These short-term changes are important for how our brains process information. In autism, scientists have found that these changes can be different. For example, certain gene mutations linked to autism can affect how well these short-term changes work. Some of these genes, like SYN1 and SYN2, help control the availability of chemical messengers at neuron connections. Mutations in these genes can lead to an imbalance in brain activity, making some signals too strong and others too weak (Frontiers, 2015)​ (Frontiers)​.

Other studies have shown that mutations in another gene, neuroligin-3, which is also linked to autism, can change how neurons communicate in different parts of the brain. These mutations can increase the strength of certain signals and disrupt the balance of brain activity (Molecular Psychiatry, 2015)​ (Nature)​. This imbalance can contribute to some of the behaviors seen in autism.

Understanding these short-term brain changes helps scientists learn more about how autism affects the brain and can lead to new ways to help people with autism.

2 versions of this post

For the Academic/Scientific Audience

PlainSpeak in plain language for the lay reader



Disclose or not to disclose your dx.

Sometimes I have to wonder about how inclusive the term neurodiverse itself is. 

For example there is an assumption that "to disclose or not to disclose" is a problem for every ND person in higher ed or employment. 

For many of us with visible disabilities, (my autism is very very very apparent), we DON'T have the luxury of choice;  to disclose or not to disclose our disability. 

Not having that choice puts us at a huge disadvantage; as many doors of opportunities are shut in your face (you are deemed unworthy off the bat), you don't even get to cross the threshold of many such doors before you even coming to the issues like deciding to disclose or not disclose. 

So how inclusive is ND movement if makes such sweeping generalizations around who is considered ND. 

Diagnostic Overshadowing

Autism Lexicon: Diagnostic Overshadowing

Diagnostic overshadowing in autism occurs when the symptoms and behaviors associated with autism obscure or overshadow the presence of other mental or physical health conditions. This can lead to misdiagnosis, underdiagnosis, or delayed diagnosis of other conditions, ultimately impacting the individual's overall care and treatment outcomes. 

PlainSpeak: Diagnostic overshadowing in autism is when doctors focus too much on autism and miss other health problems because they think it must be all because of autism.  

Read in more detail...





Loss of education seen as a crisis for non-disabled kids but NOT for disabled kids.

So true.

If an NT kid was "not in school for two months, [the school district] would be coming after [the parents]. A non-disabled "child who has missed about 18 school days... [is considered] a crisis that triggers a range of emergency interventions."

But a disabled kid not coming to school seems to be a relief the school district, there is no urgency to bring them back. A disabled kid not being able to attend school is never a crisis.
 
They can be left without services, and at the drop of a hat [for staff shortages and a thousand other excuses by the school] and the child is literally asked not to come to school and stay at home instead. Education it seems, is the responsibility of parents and not the school district when it comes to disabled children.

Refocusing the Autism Conversation: Beyond Terminology

Refocusing the Autism Conversation: Beyond Terminology

In his insightful book The Brain Inside Out, György Buzsáki highlights a significant challenge in scientific discourse: the tendency to create new terminology in an attempt to explain complex phenomena. He shares his frustration, echoed by his mentors, that these "filler terms" often obscure the true nature of the mysteries they aim to unravel. This practice can mislead readers into believing that a mechanism has been identified, when in reality, it remains elusive.

This phenomenon is particularly relevant in the field of autism, where debates over terminology often overshadow the more pressing goal of finding solutions. The discussion around whether to use "person with autism" or "autistic person" is a prime example. While language is undoubtedly important, the energy spent on these debates could be better directed towards understanding and addressing the needs of autistic individuals.

The focus should shift towards practical outcomes and real-world solutions. Instead of getting caught up in linguistic nuances, we should prioritize research that improves the quality of life for autistic people. This includes exploring interventions that address sensory processing differences, finding biomedical solutions to pressing health concerns, developing educational strategies that support diverse learning styles, lowering cost of support care, and creating inclusive environments that accommodate a wide range of abilities.

Buzsáki’s critique of explanatory terms serves as a reminder to the autism community: let’s not lose sight of our primary objective. By moving beyond terminology debates and concentrating on tangible solutions, we can make meaningful progress in enhancing the lives of those on the autism spectrum.

LTP and LTD and their Role in Autism

The Neuroscience of Autism 
Long Term Potentiation (LTP),  Long Term Depression (LTD) and their role in Autism.

LTP and LTD are critical forms of long term synaptic plasticity that underlie learning and memory. These processes are governed by Hebbian plasticity, a principle summarized as "cells that fire together, wire together." This means that the synaptic strength between two neurons increases when they are frequently active together (LTP), and decreases when they are less synchronized (LTD).

Spike-Timing Dependent Plasticity (STDP), a form of Hebbian plasticity, emphasizes the precise timing of neuronal spikes:

  • LTP: Induced when a presynaptic neuron fires just before a postsynaptic neuron, typically within 20 milliseconds. This leads to a significant influx of calcium (Ca2+) through NMDA receptors and voltage-gated calcium channels (VGCCs), strengthening the synapse.
  • LTD: Occurs when the postsynaptic neuron fires before the presynaptic neuron, usually within 20-100 milliseconds. This results in a weaker Ca2+ signal, leading to synaptic weakening.

Research has revealed substantial alterations in LTP, LTD, and Hebbian plasticity in autism, providing insights into the neural mechanisms that contribute to autism’s cognitive and behavioral characteristics

  1. Hippocampal Dysfunction:

    • Studies on animal models, such as the BTBR mouse model of autism, show impaired hippocampal LTP. This impairment correlates with the learning and memory deficits commonly observed in autism (Rubenstein & Merzenich, 2003; Bourgeron, 2015)​ (Frontiers)​​ (Nature)​.
  2. Cerebellar Abnormalities:

    • Atypical LTD has been noted in the cerebellum, a region critical for motor control and coordination. This could underlie the motor deficits observed in autism (Fatemi et al., 2012)​ (Nature)​.
  3. Genetic Factors:

    • Mutations in synaptic genes such as SHANK3, NRXN1, and NLGN3, which are vital for maintaining synaptic plasticity, have been linked to autism. These mutations can disrupt the balance of LTP and LTD, leading to synaptic dysfunctions associated with autism (Durand et al., 2007; Südhof, 2008)​ (Frontiers)​​ (Nature)​.
  4. Neuromodulators:

    • Dopamine (DA) is a key neuromodulator that can modulate the direction and extent of synaptic changes. It acts through D1/D5 receptors to enhance LTP or through D2 receptors to promote LTD. This modulation is essential for adaptive learning and behavior in autism (Yagishita et al., 2014)​ (Frontiers)​.


2 versions of this post

PlainSpeak. Plain Language for the Lay Reader

For the Academic/Scientific Audience



References:

  • Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2(5), 255-267.
  • Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 16(9), 551-563.
  • Fatemi, S. H., Aldinger, K. A., Ashwood, P., Bauman, M. L., Blaha, C. D., Blatt, G. J., ... & Welsh, J. P. (2012). Consensus paper: Pathological role of the cerebellum in autism. The Cerebellum, 11(3), 777-807.
  • Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., ... & Bourgeron, T. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39(1), 25-27.
  • Südhof, T. C. (2008). Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 455(7215), 903-911.
  • Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C., Urakubo, H., Ishii, S., & Kasai, H. (2014). A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 345(6204), 1616-1620.

The Social Responsiveness Scale SRS

What is it? 

The Social Responsiveness Scale (SRS) is a tool primarily used for quantitative measurement of autism symptoms in the general population, including individuals who do not have a clinical autism diagnosis. 

It measures the severity of autism spectrum symptoms as they occur in natural social settings [1]. Although it is not a diagnostic tool for autism, it provides a clear picture of functioning in areas that could be impacted in autism.

There is both a child version filled out by caregivers and an adult self-report measure. 

Five Subscales
  1. Social Awareness: Recognition of social cues 
  2. Social Cognition: Interpretation of social cues 
  3. Social Communication: Conveyance of appropriate responses to social cues 
  4. Social Motivation: The extent to which a respondent is generally motivated to engage in social-interpersonal behavior. 
  5. Autistic Mannerisms: Stereotypical behaviors and highly restricted interests characteristic of autism [2].
Scoring and Interpretation

The SRS is a 65-item rating scale, with responses ranging from "not true" to "almost always true." Scores are computed for each subscale as well as a total score that measures severity along the autism spectrum.
  • Scores of 76 or higher: severe
  • Scores of 60-75: mild-moderate, indicates presence of some autism symptoms
  • Scores below 59: considered within typical limits, indicating no significant issues with social responsiveness [2]

History
The SRS was first developed by John N. Constantino and Christian P. Gruber, who published it in 2005. It was designed to be a quantitative measure of autism traits in the general population, including individuals who do not necessarily have an ASD diagnosis [3]. The child version was filled out by caregivers. The SRS for adults was designed to extend the applicability of the SRS to adults, addressing the need for a quantitative measure of autistic traits across the lifespan [3].

Psychometrics
The SRS demonstrates good psychometric properties. It has high internal consistency (Cronbach's alpha = .97) and test-retest reliability (Intraclass correlation = .88) [4]. The inter-rater reliability is also good, ranging from .76 to .95 [5].



References: 
[1] Constantino, J.N., & Gruber, C.P. (2012). Social Responsiveness Scale, Second Edition (SRS-2). Torrance, CA: Western Psychological Services.
[2] Constantino, J.N., & Gruber, C.P. (2012). Social Responsiveness Scale (SRS). Torrance, CA: Western Psychological Services.
[3] Constantino, J.N., & Gruber, C.P. (2005). The Social Responsiveness Scale. Los Angeles: Western Psychological Services.
[4] Constantino, J. N., Davis, S. A., Todd, R. D., Schindler, M. K., Gross, M. M., Brophy, S. L., et al. (2003). Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33, 427–433.
[5] Bölte, S., Poustka, F., & Constantino, J. N. (2008). Assessing autistic traits: cross-cultural validation of the social responsiveness scale (SRS). Autism Research, 1(6), 354-363.ckles, A., Kreiger, A., Buja, A.,

The nuts and bolts of PD

The nuts and bolts of Parkinson's Disease.

Parkinson's disease (PD) typically manifests in individuals over the age of 50, with about 5% prevalence in those over 85 years old. Most cases are sporadic with rare inherited variants, suggesting that environmental or toxin-related triggers are likely contributors. PD is characterized by symptoms such as rhythmic tremors in the hands and feet, especially at rest, bradykinesia (slow movement), and akinesia (difficulty initiating movement). These symptoms result from damage and cell death in the brain regions such as the substantia nigra in the brain stem and the locus coeruleus, leading to decreased levels of norepinephrine and dopamine (DA). The substantia nigra projects to the striatum, where DA is the principal neurotransmitter involved in relaying movement messages to the cortex. Neuromelanin, a byproduct formed from the oxidation of DA to quinones and semiquinones and subsequent metal ion binding, is evident in PD due to its black pigmentation. The disease also features Lewy bodies in the substantia nigra and other brain areas, which are composed primarily of the protein alpha-synuclein, abundant in presynaptic neuron terminals. The major treatment for PD is L-DOPA, but excessive DA can lead to the formation of hydrogen peroxide and reactive oxygen species when released into the cytoplasm. This oxidative stress contributes significantly to the neurodegeneration observed in PD 

Active Sensing and Autism

Neuroscience Concepts: 

Active Sensing

Active sensing refers to the process by which organisms actively control their sensory organs to acquire and process sensory information more effectively. In the context of multisensory integration, active sensing involves the coordination and adjustment of different sensory inputs based on motor actions to enhance the perception of the environment. For instance, moving the head or eyes to better see or hear a source of interest, or manipulating an object to better gauge its properties. This form of sensing is crucial because it allows an organism to integrate sensory information from various sources in a way that is aligned with current behavioral goals, thereby enhancing decision-making and interaction with the environment.

In autistics, active sensing and multisensory integration can manifest differently compared to NTs. Research suggests that autistics may experience variations in how sensory information is integrated, leading to differences in perceiving and responding to the environment. For example:

  • Hypo- and Hypersensitivities: Autistic individuals often exhibit sensory sensitivities that can affect their active sensing behaviors. Hypersensitivities (over-responsiveness) might lead to avoidance of certain sensory inputs, while hyposensitivities (under-responsiveness) might lead to seeking out more intense sensory experiences. This can affect how they use active sensing in daily interactions.
  • Attention and Filtering: Differences in attentional mechanisms in autism can influence active sensing. Autistic individuals might have difficulty filtering out irrelevant sensory stimuli, leading to challenges in focusing on specific sensory inputs necessary for effective multisensory integration.
  • Motor Coordination and Planning: Difficulties with motor coordination and planning, commonly observed in autism, can also impact active sensing. If motor actions are less precise or more effortful, it may affect the ability to actively manipulate sensory inputs effectively.
  • Neural Processing Differences: Studies have shown differences in neural processing pathways involved in sensory perception in autism. Research has noted that autistic individuals might process sensory inputs in a more localized manner, potentially affecting the global integration of multisensory information (Marco et al., 2011)
  • Predictive Coding: Some theories, such as those involving predictive coding, suggest that autistics might have a different approach to anticipating sensory inputs, which impacts how sensory information is integrated and processed. This can lead to differences in how expected and unexpected stimuli are managed, further influencing active sensing behaviors.
These differences highlight the need for a nuanced understanding of how multisensory integration and active sensing operate in autism. They also underscore the importance of creating environments and interventions that are sensitive to the unique sensory processing characteristics of autistic individuals, thereby supporting better integration of sensory information and more effective interaction with the world.

Yearning for Human Connections

  https://time.com/6551520/loneliness-autism-essay/



Victor Pineda the new head of CIL

Excellent news about Victor Pineda getting to be the new head of Center for Independent Living. 

https://thecil.org/press-release/center-for-independent-living-welcomes-dr-victor-santiago-pineda-as-new-executive-director-amid-crucial-times-for-disability-rights/ 

Great pick for CIL. I remember former CIL head James Stuart referring to Victor as a "Super Crip".

    In an old blog post, I had written  "I’ve come to deeply admire Dr. Pineda and I have a lot to learn from him on deconstructing the seemingly impossible into a possible." 

    The Cocktail Party Effect

    The cocktail party effect refers to the brain's ability to focus on a specific auditory stimulus, such as a single conversation, in a noisy environment. In autism, difficulties with this selective auditory attention may contribute to sensory overload and challenges in social communication.

    PlainSpeak:  The cocktail party effect is the ability to tune into one conversation in a noisy room. Many autistic individuals may find this difficult, leading to sensory overload and making social situations challenging.


    Read more on the Cocktail Party Effect: 

    Academic/Scientific Audience 

    PlainSpeak for Lay Reader

    Impact of language choices in scientific publication on representation of autistic researchers.

    The impact manifests in several key ways.

    1. Inclusivity and Accessibility. Language that is clear, direct, and jargon-free is more accessible to a wider audience. Which means a wider spectrum of autistics can engage more fully with scientific content, whether they are authors, reviewers, or readers.
    2. Bias and stigma. 
    3. Representation. Who is getting left out and who is getting included. 
    4. Authorship and collaboration. Autistics may face barriers in scientific publishing due to implicit biases in what is considered rigorous or appropriate academic language. This can discourage participation or lead to under representation in authorship and peer review processes.
    5. Ethical considerations. Engaging the autistic community ensures that scientific discourse does not inadvertently marginalize or misrepresent groups.
    6. Policy and guidelines. Journals and publishers can influence language norms through their style guides and editorial policies. By adopting guidelines that favor inclusive and respectful language, publishers can lead the shift towards more equitable representation in scientific literature.




    Even after being told to stop

    Quote from my chapter in the Anthology Below.
    "Survival of the Kindest - Truths from a Zoom Reality"

     

    I submitted an Abstract

    Submitted my first Grad School abstract to 
    SfN Society for Neuroscience Conference. 

    How about that!!


     

    Decoding the Excitatory-Inhibition Imbalance in Autism

    Caveat: Always keep in mind there is no single theory that perfectly explains autism.


    The Excitatory-Inhibition (E-I) Imbalance hypothesis posits that an imbalance between excitatory and inhibitory signaling in the brain contributes to the sensory, cognitive, and behavioral features of autism.

    Factors that contribute to the E-I imbalance.

    Elevated Glutamate and Hyperactive Glutamatergic Neurons

    Glutamate is the primary excitatory neurotransmitter in the brain, and its excessive release or receptor overactivation can lead to heightened neuronal excitability. Research indicates that autistics have increased glutamate concentrations in certain brain regions, suggesting a hyper-excitable state that disrupts normal neural communication and network dynamics. This over-excitation can manifest in the form of heightened sensitivity to sensory stimuli and difficulties in cognitive processing.


    GABAergic Signaling Deficit

    GABA is the primary inhibitory neurotransmitter, crucial for counterbalancing excitation. In autism, there is often a reduction in GABAergic signaling, whether through decreased GABA levels, impaired GABA receptor function, or reduced GABAergic neuron activity. This means that the inhibitory 'brake' on neuronal activity is weakened, failing to counteract the excessive excitation from glutamate, thus exacerbating the E-I imbalance.

    Imbalance in Pyramidal Neurons and Interneurons

    Pyramidal neurons are the primary excitatory cells in the cortex, while interneurons provide the necessary inhibitory control. In autism, there are differences in the density, function, and connectivity of these neuron types eg: alterations in the number or function of specific types of inhibitory interneurons, such as parvalbumin-positive (PV+) interneurons. These changes disrupt the local circuitry, leading to an overall increase in excitation and reduced inhibition.

    Critical Developmental Periods

    E-I imbalance is particularly impactful during critical developmental periods when the brain is highly plastic and sensitive to changes. Early disruptions in E-I balance can have long-lasting effects on brain development and function. During these periods, the maturation of both excitatory and inhibitory circuits is crucial for establishing proper neural networks. If the E-I balance is skewed, it can impair synaptic plasticity, cortical maturation, and the formation of functional neural circuits, contributing to the developmental trajectory of autism.

    Alterations in Synaptic Proteins

    Changes in the expression or function of synaptic proteins play a critical role in E-I imbalance. Proteins such as neuroligins and neurexins, which are involved in synaptic adhesion and signaling, have been implicated in autism. Mutations or dysregulation of these proteins can lead to atypical synapse formation and function, contributing to an imbalance between excitatory and inhibitory synapses.

    Ion Channel Dysfunction

    Ion channels are essential for maintaining the proper function of neurons. Dysfunctions in ion channels, such as those involving sodium, potassium, and calcium, can alter neuronal excitability. In autism, mutations in genes encoding these ion channels (e.g., SCN2A, KCNQ2) have been identified, leading to altered action potential generation and propagation, thereby affecting the E-I balance.

    Impaired Synaptic Plasticity

    Synaptic plasticity, the ability of synapses to strengthen or weaken over time, is crucial for learning and memory. Long-term potentiation (LTP) and long-term depression (LTD) are key mechanisms of synaptic plasticity that depend on a delicate E-I balance. In autism, impairments in LTP and LTD have been observed, suggesting that the capacity for synaptic change is disrupted, further contributing to cognitive and behavioral challenges.

    Role of Astrocytes and Microglia

    Astrocytes and microglia, types of glial cells, also play significant roles in maintaining E-I balance. Astrocytes regulate neurotransmitter levels, including glutamate and GABA, by uptake and recycling processes. Dysregulation of astrocyte function can lead to excess glutamate and insufficient GABA, exacerbating E-I imbalance. Microglia, the brain's immune cells, are involved in synaptic pruning during development. Abnormal microglial activity can lead to either excessive or insufficient synaptic pruning, disrupting the E-I balance and normal brain connectivity.

    Genetic and Epigenetic Factors

    Genetic mutations and epigenetic modifications can influence E-I balance. Numerous genes associated with autism are involved in synaptic function, neurotransmitter systems, and neuronal development. Additionally, epigenetic changes, such as DNA methylation and histone modification, can alter gene expression patterns related to E-I balance. These genetic and epigenetic factors contribute to the heterogeneity observed in autism, affecting the degree and nature of E-I imbalance across individuals.

    Environmental Influences

    Environmental factors, including prenatal exposure to toxins, infections, and stress, can impact E-I balance. These factors can alter the development of neural circuits and neurotransmitter systems, leading to long-term changes in excitatory and inhibitory signaling. Understanding the interaction between genetic predisposition and environmental influences is crucial for comprehending the full picture of E-I imbalance in autism.

    Keynote at Duke ACE

    Thank you for such a powerful presentation, Hari! As a mother of an autistic child, I found your insights deeply resonant. I'm grateful for the opportunity to learn from it. 



     

    Rewind: Interactions with Planet X

    Rewinding to something I wrote many years ago in high school. 

    ===== 

    Interactions with Planet X

    (So you want to help, but have no clue) 

    My fellow Teens, 

    You all probably know some people with disabilities. After all, it's fairly commonplace now. Words like Autism, Downs Syndrome and Cerebral Palsy abound in the news. You probably even feel sorry for them. But honestly, even a truckload of pity is not much use. 

    You probably are also "initially freaked out" at meeting people with disabilities. (This is a direct quote from a high school volunteer I know.) Maybe you want to help, but have no idea how and what. 

    Consider:- Once upon a time, we were all babies. Our life track was defined - preschool, elementary school, middle school, high school, college, job etc. 

    A UCSD  sophomore was speaking of his college experiences to our SSE class last week. Many of his friends from Cupertino schools are with him in college, so his social circle remained somewhat homogeneous.  That had greatly aided his transition from the small school setting to life on an enormous college campus. I imagine it will be the same for most of you. Most of you probably have friends you've known all your life and who will be with you in college. 

    Some of those babies however, ended up on a path that wandered off into the wilderness of disability. Years of therapy helped some get back onto a more typical path, especially if the right therapy was done at the right time with the right set of people who knew what to do. But there is no set formula and not everyone made a full or even partial turnaround. But biologically, the bodies kept growing and voila, they became Teens with Disabilities!

    I speak not just for myself, but for all the others I've observed over the years. 

    The therapy years are behind most teens, parents are exhausted and most therapists are giving up. Not an attractive picture! 

    Many are headed into Homes and "residential facilities" after high school. Some are already in Homes. I had 3 classmates in 5th grade who came from a Home. The only time they got to go out, was if the school did outings, as the Home did not do that. All that my classmate Johnny ate at every meal, was cheese pizza - how healthy is that? Others, I know - post 18 and Indian - live at home with their parents. 

    A few may make it to community college or even a university. A fortunate few may even end up doing a job they like and lead independent lives. But there are always additional hurdles at every step. 

    Expectations are not high at this point.  Job training programs, at most, target low level jobs. How exciting will it be to toss burgers, especially if intellectually you are capable of so much more? Frustration rides high, and this translates into more behavioral issues. As it is, being a Teen is an emotional roller-coaster for most of you. Just add on a whole suitcase of emotional and physical struggles! 

    Your world will open out as you go into college and beyond, while those of individuals with disabilities, may well narrow down. More doors shut with age. Ironically after age 22, govt. assistance and programs reduce significantly - just when we need it most. 

    We're surrounded by adults a lot; but most are paid therapists who last just 1-2 years. There is a high turnover of people, which is very emotionally distressing. Working and assisting teens or adults is not considered a desirable profession, so one cannot expect any intelligent company either, going forward. 

    Quality of Life however, goes beyond just basic care. It becomes a  'Lonely Planet X.’

    So what was the point of telling you these depressing scenarios?

    It is said that friends influence your character?  This is the area that individuals with disabilities really fall short on. It's going to be a bigger problem going forward, as more of this growing population of children with disabilities become adults. 

    It is less your money that is needed, and more your humanity. 

    And it is not just about playing board games once a month at a center. That gets real boring by the 3rd month. And irritating by the 6th month, because by then the same games start to feel like therapy. And teens (disabled or not) don't want to be subjected to preschool activities like circle-time! Oh the sheer indignity of having preschool circle-time in some of the Special Ed classrooms, years after our typical peers had stopped doing them. Are you surprised that many adults with disabilities still listen to Barney and Sesame Street?

    It is about getting involved in their lives. Being involved does not mean being physically there all the time either. In today's Internet World, there are many avenues of communication - Facebook, email, text, a phone call etc...

    Tell them about your own lives so that through you, they can learn and experience more. You will be surprised at the insights you get into your lives when viewed through their eyes.  Most are surprisingly sensitive and intelligent despite their outward body mannerisms.  A person may have cerebral palsy and be dependent on a wheelchair. They may not even be able to respond. But their minds will eagerly lap up information and conversation.  Don't expect responses, especially if the person has limited communication skills - just be there.  They will never cease to amaze you or surprise you.

    Get to know a few individuals and continue to be in their lives. The key is to be a constant presence over many years.  Don't be a therapist who moves onto another client in 1-2 years. 

    Check in during your school vacations, and during your college vacations. Visit if you can. 

    Include them in some of your physical activities. Are you or your friends in a musical performance, band, team or play? Invite them to these - you will find no better cheerleaders. Do you belong to a group of some sort – you could find ways to include them at least some of the time. What do you do with your typical friends - do you just "hang out and chill.”? You'd be amazed at how many teens with disabilities long to do this but don't have the opportunity. 

    Don't assume they don't know academics just because they haven't been formally taught it. Academic subjects are just a matter of perspective sometimes. In light of other challenges, it just seems a lot more straightforward. Tell them about what you do - why you find certain subjects difficult or which teacher is really lousy or good. 

    It’s pretty hard to abuse drugs, smoke or drink if you are disabled. So you will in fact, be keeping very good company. 

    Be an advocate for them and watch out for them in their lives. Friends of this disabled adult I know on Facebook, keep tabs on her online activity to watch for online predators and the like. Most individuals will outlast their parents, so friends are important in their lives. As you become an adult, there will be many such opportunities for advocacy. Dealing with bureaucracy is tough for most; imagine the disabled adult who has to face it 24x7. 

    Consider - Pity is condescending, while Empathy and Friendship is Humanity. 

    In the end, it's a win-win scenario for both. You will fulfill a real need and make a difference. Man is defined by his character, not by his wealth or his social status. You will be amazed at how these interactions will shape your life. 

    Bring the Forgotten People on Lonely Planet X, back to the Humane Planet Earth. 

    You may or may not choose to do something about this issue, or not be able to do so now. But perhaps you will later in your life. All this is Food for Thought.

    Words matter: Reframing neurodivergence in science, medicine and society

     https://www.elsevier.com/connect/words-matter-reframing-neurodivergence-in-science-medicine-and-society

    How we write and think about neurodiversity can have a profound effect on people’s lives; watch the webinar hosted by Cell Press and The Lancet.










    Weak Central Coherence Theory of Autism

    Autism Lexicon: Weak Central Coherence (WCC) Theory

    The WCC Theory is a cognitive theory of autism (cognitive theories try to explain how autistics think). 

    It suggests that  autistics focus on noticing details but might struggle with seeing the bigger picture. This affects how they see and understand the world around them. This unique way of thinking brings both strengths and challenges, affecting everyday tasks, social interactions, and work or hobbies.

    Read about WCC in more detail 

    -------