Fond memories of Greek Theatre, built in 1903.
Bonfire Night before the Big Game and who can forget the finale - Psychology Dept Commencement where I gave a speech on stage.
Fond memories of Greek Theatre, built in 1903.
Bonfire Night before the Big Game and who can forget the finale - Psychology Dept Commencement where I gave a speech on stage.
[Plain Language for Lay Audience]
Alexithymia means having trouble recognizing and describing your own emotions. People with alexithymia often can't tell what they are feeling and find it hard to explain their emotions to others. This can make it difficult to connect with others and share feelings.
Interoception is the ability to sense and understand signals from inside your body. These signals include things like hunger, thirst, heartbeat, temperature, breathing, and the need to go to the bathroom. Interoception helps keep our bodies balanced and healthy by letting us know what we need and how we feel inside. It also plays a big role in how we experience and control our emotions by linking our body sensations to our feelings.
Both alexithymia and interoception issues can happen together in autism.
Autistics might have unusual interoceptive awareness, meaning they can be more or less aware of their body signals than other people. This can cause problems like not noticing when they are uncomfortable or sick, or misunderstanding changes in their emotions, which are important for social interactions and taking care of their health.
Here are some examples of how this can affect autistics:
From a brain science perspective, the insular cortex and the anterior cingulate cortex (ACC) are important for interoception. The insula helps combine body signals with thoughts and emotions, while the ACC is involved in feeling pain. In autism, these brain areas might work differently, affecting how body signals and emotions are processed. Studies using brain scans have shown that the insula reacts differently during body signal tasks in autism, which might explain their unique interoceptive experiences.
Addressing both alexithymia and interoception is important for improving emotional understanding and overall well-being. Helping autistics improve their interoceptive skills can lead to better emotional control and awareness, making it easier for them to connect with others and take care of their health.
2 Versions of this article:
Plain Language for Lay Audience
Other Articles in Plain Language #PlainSpeak
Read full article at https://fortune.com/2023/07/27/flexible-work-critics-using-same-arguments-were-used-oppose-disabled-ramps-closed-captioning-equity-access-never-optional-remote-work-careers-hari-srinivasan/
“Positive psychology in the context of autism… is people with autism thriving and flourishing, and moving beyond surviving." - Hari Srinivasan
https://www.liebertpub.com/doi/10.1089/aut.2024.38246.pw
"Accessibility and inclusivity of positive psychology interventions is limited across the spectrum, particularly for the most marginalized members… A critical misunderstanding that exemplifies these issues is the misconception that autistics with higher support needs do not experience mental health issues. This not only excludes a significant portion of the autistic population from mental health initiatives but also from the benefits that positive psychology can offer, highlighting the urgent need for more inclusive and accessible practices in this field." - Hari Srinivasan
https://www.liebertpub.com/doi/10.1089/aut.2024.38246.pw
Autism Lexicon: Blindsight
Blindsight refers to the residual visual capabilities in individuals with damage to the primary visual cortex, allowing them to respond to visual stimuli without conscious perception. Its relevance to autism lies in investigating the potential for similar dissociations between conscious and subconscious sensory processing in autistic individuals.[Read More: Academic/Scientific Audience ]
PlainSpeak: Blindsight is a phenomenon where people with certain types of brain damage can respond to visual stimuli without consciously seeing them. Its connection to autism involves exploring how sensory information might be processed differently in both conditions, sometimes without conscious awareness. [Read more: PlainSpeak Plain Language for Lay Audience]
When discussing autism, we often focus on behaviors—how someone communicates or interacts with others. However, to truly understand autism, it’s important to look deeper into the brain's functioning. Neurophysiological and neurobiological perspectives offer insights into the brain's activity and structure in autism.
Neurophysiology refers to the study of the brain's electrical and chemical processes. In simpler terms, it looks at how the brain functions in real time. For autistics, neurophysiology can explain why sensory experiences might feel more intense or overwhelming. Research using EEG has shown that autistic brains often respond differently to sensory stimuli, with variations in brain wave patterns that suggest heightened sensitivity or delayed processing . This difference in neural activity can contribute to sensory overload and the need for certain sensory accommodations.
Neurobiology: The Brain's Structure and Development
Neurobiology, on the other hand, examines the brain's physical structure, development, and genetics. It looks at the brain's "hardware"—its neurons, synapses, and the genes that influence its development. In autism, neurobiological studies have found variations in brain regions involved in social behavior and emotion processing, such as the amygdala and prefrontal cortex . These differences can affect how autistic individuals perceive and respond to social stimuli, contributing to the diverse range of social behaviors seen in autism.Genetic research also plays a significant role in neurobiology. Many studies have identified genes associated with autism, highlighting the genetic underpinnings that contribute to brain development and function . These insights are crucial for understanding the diverse expressions of autism and for developing personalized approaches to support autistic individuals.
Combining neurophysiological and neurobiological perspectives provides a more comprehensive understanding of autism. For example, if an autistic person has a neurobiological difference in the connectivity between brain regions involved in emotion processing, this might lead to a neurophysiological response that is heightened or atypical when encountering emotional or social cues.