Showing posts with label movement. Show all posts
Showing posts with label movement. Show all posts

The Decerebrate Cat Walking Experiment

 




In the realm of scientific exploration, certain experiments push boundariesin ways not acceptable by modern ethical standards. One such experiment involves decerebrate cats (popular in the 1940-50s and not done anymore), but which shed light on locomotion,


The Decerebrate Cat Walking Experiment: The video showcases a decerebrate cat walking on a treadmill at varying speeds, revealing three distinct gait patterns.  Decerebrate cats have had their cerebral cortex removed, leaving the brainstem intact. Essentially the cat was paralyzed as its spinal cord didn't talk to its brain anymore which means there was not enough muscle tone to keep the body upright; so researched used a harness to hold the weight of the body. 

Locomotion was initiated by sensory input of the limbs on the moving thredmill.

The primary goal of these experiments was to explore the extent of the brain's involvement in controlling movement. At what level in the brain is behavior (locomotion) controlled.  Researchers aimed to test the idea that much of locomotion control might be inherent to an animal's biomechanics, rather than relying heavily on conscious brain commands. 

Findings:

  • Minimal Brain Control: during locomotion, especially in activities like walking, trotting, or running, minimal control comes from the brain itself. Instead, the experiments suggest that a significant portion of locomotion control is achieved through biomechanical and morphological features of the animal's body.
  • Biomechanical Design: The experiments support the concept of passive dynamic locomotion, which proposes that animals are capable of controlling their movements efficiently by taking advantage of their natural biomechanical structure.

These findings have broad implications, from improving prosthetics and exoskeletons to advancing neural interface technology and rehabilitation practices, ultimately benefiting individuals with paralysis and advancing our understanding of locomotion in both animals and machines.